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Zusammenfassung

Die Graphcore Intelligence Processing Unit (IPU) ist ein neu entwickelter Prozessor-

typ, dessen Architektur sich nicht auf die traditionellen Caching-Hierarchien stützt.

Entwickelt, um den Bedarf an immer mehr datenzentrierten Anwendungen, wie z. B.

maschinelles Lernen, zu decken, kombinieren IPUs einen dedizierten Teil des SRAM

mit jedem ihrer zahlreichen Kerne, was zu einer hohen Speicherbandbreite, aber zu

Kosten in Form der globalen Speicherkapazität führt. Die Nähe von Prozessorkernen

und Speicher macht die IPU zu einem vielversprechenden Experimentierfeld für

Graph Algorithmen, da es die unvorhersehbaren, unregelmäßigen Speicherzugriffe

sind, die bei traditionellen Prozessoren mit Pre-Caching zu Leistungsverlusten

führen.

Ziel dieser Arbeit ist es, die Eignung der IPU für Algorithmen mit schwer

vorhersagbaren Speicherzugriffen zu testen, indem eine Breadth-First-Suche (BFS)

implementiert wird, die den Spezifikationen des Graph 500 entspricht. Gerade

wegen seiner scheinbaren Einfachheit ist BFS ein etablierter Benchmark, der nicht

nur für eine Vielzahl komplexerer Graphenalgorithmen als Unterprogramm dient,

sondern auch eine Vergleichbarkeit über eine Vielzahl von Architekturen ermöglicht.

Benchmarks der IPU-Codes auf einer Vielzahl von Instanzen und vergleichen

seine Leistung mit modernsten CPU und GPU-Codes. Die Ergebnisse zeigen, dass

die IPU einen Geschwindigkeitszuwachs von bis zu 4× gegenüber dem schnellsten

konkurrierenden Ergebnis auf einer NVIDIA V100 GPU liefert, mit typischen

Geschwindigkeitssteigerungen von ca. 1.5× auf den meisten Testinstanzen.
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Abstract

The Graphcore Intelligence Processing Unit (IPU) is a newly developed proces-

sor type whose architecture does not rely on the traditional caching hierarchies.

Developed to meet the need for more and more data-centric applications, such

as machine learning, IPUs combine a dedicated portion of SRAM with each of

its numerous cores, resulting in high memory bandwidth at the price of capacity.

The proximity of processor cores and memory makes the IPU a promising field

of experimentation for graph algorithms since it is the unpredictable, irregular

memory accesses that lead to performance losses in traditional processors with

pre-caching.

This paper aims to test the IPU’s suitability for algorithms with hard-to-predict

memory accesses by implementing a breadth-first search (BFS) that complies with

the Graph 500 specifications. Precisely because of its apparent simplicity, BFS

is an established benchmark that is not only subroutine for a variety of more

complex graph algorithms, but also allows comparability across a wide range of

architectures.

Benchmarks of the IPU code on a wide range of instances compare its performance

to state-of-the-art CPU and GPU codes. The results indicate that the IPU delivers

speedups of up to 4× over the fastest competing result on an NVIDIA V100 GPU,

with typical speedups of about 1.5× on most test instances.
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1 Introduction

Moore’s Law is probably the most famous theorem which dictates the market

and development of microprocessors and software. From the inception of the first

microcontrollers in 1970 to 2010, developers had a simple time improving their

code by waiting for the next hardware generation. However, since 2010 the clock

frequency of a single processor core is not increasing due to the available thermal

capacity. All available transistors are placed into more complex logic to optimize

the instructions a single core is executing. Some famous techniques are prefetching

of data, deep cache hierarchies, or speculative execution. Even though all of these

optimizations are transparent to the machine developers, they are struggling with

optimizing their code to optimally utilize the processor’s capabilities for a wide

range of problems.

Instead of spending the transistor budget on increasingly complex cores, hardware

architects shifted towards multicore architectures (Figure 1.1). Nonetheless, these

multicore architectures still have most optimizations implemented to increase the

effective operation throughput. Henceforth, traditional general-purpose processors

operate on shared memory spaces and have a number of cores in the order of 4 to

32, still limited by the complexity of the cores.

As the big performance increases diminished, since the 2010s, new ways needed

to be found to work with the growing demand of specialized problems such as

AI/ML or graph analytics. Therefore, more specialized architectures become

viable, which are not requiring the generalized processor overhead. A trend in

hardware architecture is the development of domain-specific AI/ML processors

tailored to make machine learning faster. Bespoke processors often work with

1



1 Introduction

Figure 1.1: Development of processor frequeny while upholding Moore’s Law. Cred-
its and Copyright at M. Horowitz, F. Labonte, O. Shacham, K. Oluko-
tun, L. Hammond, C. Battne, and K. Rupp.

different assumptions compared to CPUs and GPUs. AI/ML accelerators often

provide many more simple cores with no complex optimizations and work with a

shared noting memory model. These processors have numbers of cores in the order

of 1000 to 350, 000 and up to 850, 000[Roc+20].

One of the companies developing novel accelerators is Graphcore, which presented

their first processor, called the Colossus GC2, in 2018. It is targeted at machine

intelligence applications and referred to as an intelligence processing unit (IPU).

Similar to GPUs, the IPU offers a high number of low-precision FLOPS that come

from a large number of computing cores. However, unlike the GPU, which focuses

on single instruction multiple data (SIMD) processing, the IPU offers true multiple

instruction multiple data (MIMD). Furthermore, instead of DRAM with a cache

hierarchy, it uses SRAM as its main memory.
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1.1 Contributions

Graph algorithms still remain a challenging problem in the field of distributed

computing and high performing computing due to their irregular structure, paired

with the need to share pieces of information between every edge. This makes it

even difficult1 to efficiently solve graph algorithms in big distributed Massively

Parallel Computation frameworks such as MapReduce.

We want to understand how useful IPUs are to solve challenging graph problems.

As we are not able to implement all kinds of graph algorithms, we need to find

a representative problem for general graph algorithms. Henceforth, we choose a

breadth-first search as it contains irregular communication along the edges and

the algorithm is a heavily used subroutine of more complex algorithms. Solving

breadth-first search in a fast manner will likely be a good indicator for implementing

efficient graph algorithms on top of our work and IPUs in general.

In theory, the manycore design makes the IPU uniquely suited for highly irregular

workloads such as graph algorithms. The goal of this work is to test whether all of

the IPUs architectural advantages result in measurable performance benefits.

1.1 Contributions

We implement an IPU-based breadth-first search (BFS), following the specifications

of the Graph500 [Mur+10] benchmark. Introduced in 2010, Graph500 collects

BFS performance results for a wide range of hardware platforms and instance

sizes, making it by far the most studied parallel graph problem, which gives us

a wide range of meaningful comparison points. The Graph500 uses a Kronecker

graphs generator similar to R-MAT [CZF04]. Results are denoted in traversed

edges per second (TEPS). In addition, we use a test set of Yang et al. [YBO20],

which consists of matrices from the SuiteSparse [Kol+19] matrix collection.

We consider our work primarily as a building block for multi-IPU BFS and other,

more sophisticated graph algorithms that use BFS repeatedly. These include graph

algorithms used in the analysis of social networks, network optimization, cyber

1https://ai.googleblog.com/2021/03/massively-parallel-graph-computation.html
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1 Introduction

security, network centralities, graph matchings, bioinformatic and more domaines.

While the IPU’s large number of independent compute cores, fast interconnect

between these cores, and fast SRAM memory makes it a very attractive platform

for graph algorithms, we face two major challenges when using the IPU in this

manner. First, the device was designed for machine intelligence applications, and

the provided data structures and architecture design reflect that. While the cores

are MIMD capable, there is no special support for irregular data structures such as

graphs. Furthermore, all communication between the IPU cores must be declared

at compile time. Naturally, this is a major challenge for computations such as

BFS or other graph algorithms that determine communication patterns based on

decisions done at run-time. Second, since the main IPU memory is SRAM, it is very

limited, which puts a strict limit on the size of the graphs that can be processed

by a single IPU.

To tackle the former limitation, the code creates its own mapping of the graph

to the compute cores. We also control memory alignment explicitly, as well as the

spawning of worker threads on the compute cores. Via temporal multithreading,

the memory access latency can be hidden such that the individual threads do not

experience latency. Naturally, the latter cannot be overcome via software. Thus,

our paper makes the following contributions:

1. We present the first implementation of a graph algorithm on the new Graph-

core IPU architecture whose features promise outstanding performance for

such problems.

2. We give a detailed discussion of the challenges that need to get overcome to

run efficient graph algorithms on the IPU. We expect that these techniques

are applicable to a wide range of other graph algorithms as well.

3. We present performance comparison experiments using state-of-the-art CPU

and GPU codes and hardware. The results show that our IPU implementation

compares favorably to all tested alternatives.

4



1.2 Thesis Outline

1.2 Thesis Outline

This thesis is organized as follows:

In Section 2 we introduce the IPU hardware architecture. Furthermore, we are

introducing the programming model and provide examples of how to programmati-

cally interact with Graphcore’s programming framework.

In Section 3 we provide related work and discuss parallel BFS work on other

architectures. Further, we show BFS optimizations and implementation background

for general linear algebra and sparse matrices.

In Section 4 we present our IPU implementation and algorithmic adaptations for

running BFS on the IPU hardware. We show and discuss challenges, workarounds,

and optimizations techniques for efficiently interacting with the IPU.

In Sections 5 we describe our experiments and datasets used, and in Section 6

we show our results and analyse the hardware utilizing.

In Section 7 we discuss the experience of developing and adapting algorithms

for the IPU, together with tradeoff and limitation due to time and effort.

In Section 8 we discuss the implications of the results and conclude the thesis.

In Section 9 we outline the next research directions extending and building on

top of this work.

This work has also been accepted to the International Supercomputing Conference on High
Performance 2021 (ISC21)
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2 IPU Hardware

2.1 Architecture
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Figure 2.1: Tile layout on the IPU processor.

The Colossus GC2 IPU has 1216 tiles, each tile having a compute core and its

own local memory of 256 KB. Thus, the IPU has a total of 304 MB of memory.

The tile layout is illustrated in Figure 2.1. The memory of the tiles is implemented

in SRAM and is thus part of the chip. Naturally, this offers a far higher bandwidth

(45 TB/s, aggregate) and lower latency (6 clock cycles) than DRAM. The tiles

themselves are organized into islands consisting of four tiles, and the islands are

grouped into columns of 19 islands each, and the GC2 IPU has 16 such columns
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2 IPU Hardware

(Table 2.1). The cores run at a default frequency of 1.6 GHz, but they can be

clocked down to 1.3 GHz for thermal or electrical reasons, such as the PCIe slot

not being able to provide the required power. A single GC2 IPU has 150W TDP.

The PCIe version hosts two IPUs per card for a total of 300W TDP, which requires

additional cables, similar to powerful GPUs. A rack-mounted IPU-POD with four

socketed GC2 IPUs is also available. In this version, all IPUs run at 1.6 GHz. For

an in-depth discussion of the architectural details including microbenchmarks, we

refer the reader to Jia et al. [Jia+19]. In 2020, Graphcore presented the GC200

IPU with more tiles and more memory per tile, but the device was not available

for development at the time of this writing.

Element Contents

One Tile Core and Local Memory (256 KB)
Island 4 Tiles
Column 76 Tiles (19 ”Islands”)
IPU 1216 Tiles (16 Columns)

Table 2.1: Hierarchy of components in the IPU

2.2 Programming Model

IPU programming follows the classical dataflow model. Programs are assembled

by composing a logical execution graph at compile time. It consists of alternating

layers of state and computation vertices. The state is exclusively organized in

multidimensional arrays called tensors, which are symbolically represented at

compile time and have pre-determined dimensions. Such a structure makes it

ideally suited for Tensorflow [Aba+16] applications.

Each computation vertex is associated with a codelet, i.e. a piece of code that

prescribes the computation to occur in the vertex. Multiple codelets at the same

layer of the graph can be executed in parallel as long as they do not write to

the same part of a tensor, and all codelets must be executed before progressing

8



2.2 Programming Model

to the next layer of the computation graph. At the end of such a compute step,

data is exchanged among the cores to ensure a consistent state, thereby creating a

bulk-synchronous parallel (BSP) [Val90] superstep structure. Figure 2.2 depicts

such a synchronized graph.The rationale for this structure is that due to bandwidth

contention, overlapping memory-bound computation and communication is difficult

and sometimes impossible [LCS18]. Furthermore, it provides a clear computation

structure and obviates the need for message buffers and thus additional memory

on the chip, making communication very efficient. On the other hand, this brings,

that all communication must be planned at compile time. Therefore, this poses a

challenge when communicating sparse data, which is necessary in graph algorithms

such as BFS.

Tensor

Compute Vertex

Global Barrier
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X
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out

SumA out

Add
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Y
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Synchronization
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Figure 2.2: Poplar’s data-flow graph represents data as Tensors and computation
as multi input-output Verticies. Data from Tensors regions (gray,red)
get copied to tiles running Verticies which output into Tensor regions.
Parallelisation is done through subslicing Tensors and running multiple
instances of Verticies on different tiles and threads. A Global Barrier
is introduced to synchronize data writes before reads.
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2 IPU Hardware

2.2.1 Programming Stack

The native interface to the IPU is given through Poplar the low-level programming

interface, which does not abstract the use of the IPU on a higher level such as

Tensorflow or PyTorch. Poplar is the lowest level access Graphcore provides to

a user and offers the most control over the individual aspects of the hardware.

Higher-level libraries build on top of the poplar functionality (Figure 2.3). The

interface to the hardware is given through a data flow defining the interface in

which a compute graph is structured and data regions (tensors) defined. The user

has to assign each part of a tensor to an individual tile, and each compute-vertex

to a tile. The graph compiler creates an executable for the IPU, which is runnable

through Poplar. Poplar calls into popc the graph compiler responsible for compiling

codelet files written in C++ to emit IPU for later use to construct the graph

executable, and a CPU ELF for emulation and testing. Poplar exposes primitives

to upload and download data to the IPU pre and during runtime. Graphcore

provides the users of Poplar with a set of handcrafted and optimized vertices and

mapping functions that reassemble a higher-level operation library. The collection

of these is referred to as the Poplibs. Poplibs contain important functionality such

as poplin for doing linear algebra functions such as dense matrix multiplication,

popops general operations and functions on tensors such as the determinant or the

dot product. poputil provides helper functions for data mapping and convenience

methods for abstracting higher-level graph operations.

The Poplar libraries are written in C++ but offer no incentive for optimized

codes as the main purpose of the APIs is to create a dataflow graph. The only

incentive for high-performance programming arises from interacting with callbacks

on IPU data streams.

Graphcore is selling the IPU for machine learning and thus offers higher-level

access to their APIs. They support common machine learning frameworks such as

Tensorflow which compiles kernels and dataflow execution graphs with the Accel-

erated Linear Algebra (XLA). XLA offers a common intermediate representation

10



2.2 Programming Model

and module-wise compiler architecture, thus making it possible to connect Poplar

as a backend target to XLA.

Figure 2.3: Poplar’s software stack has multiple abstraction levels over the IPU
hardware. The lowest level is the Poplar framework, with capabilities to
write user-defined vertices and construct data flow graphs. The higher
levels are provided by common ML frameworks, which transparently
compiles to the Poplar Framework. Copyright at Graphcore.
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2 IPU Hardware

2.2.2 Codelets

When defining a compute graph, each codelet in a Vertex is a function that takes

multiple input tensors and output tensors. When working with the Poplar API the

user connects all tensor inputs and outputs with the vertex. During runtime the

data regions get copied to and from the tile the vertex was placed on. The user

does not have to manage the exchange code, as it is done automatically by the

framework.

All user-defined codelets are written through a C++ templated interface and

are provided to Poplar as vertices that take in tensors and output or modify

tensors. These vertices can be seen analogous to functions operating on data via

reference to copy conventions. Codelets are defined as classes that inherit from

the poplar::Vertex type and overwrite the compute() method. The compute

method is the entry point called after the vertex is fully set up and all data is

available; the normal execution context is in the hardware worker mode, which is

set up from the supervisor mode.

Listing 1 implements the operation ~a = ~x ◦ ~y, where (◦) represents the pointwise

Hadamard-product and ~a, ~x, ~y ∈ Qn. Each vertex defines its input and output fields

by its class values that are connected to real tensors. The framework will copy

said class variables before the entry function is run and write the output results

back once it is finished. Class variables of type poplar::Input<T typename> are

used for input data structures, such as poplar::Vecotr<float> tensor vector of

type float. Outputs are defined with poplar::Output<T typename> analogously.

Furthermore, scalars and multidimensional nested vectors are accepted. For conve-

nience, the index and the dereference operators are implemented on top of poplar

input and output data structure to iterate, read and modify over them in a common

C/C++ syntax loop.

It is noteworthy that output data is undefined when read and input data emits

undefined behavior when written.

12



2.2 Programming Model

#include <poplar/Vertex.hpp>

class ProductVertex : public poplar::Vertex {

public:

poplar::Input<poplar::Vecotr<float>> x;

poplar::Input<poplar::Vector<float>> y;

poplar::Output<poplar::Vector<float>> result;

bool compute() {

for (auto i = 0; i < result.size(); i++) {

result[i] = x[i] * y[i];

}

return true;

}

};

Listing 1: Vertex code used to programm on the IPU, all code running on the IPU
is a contained within a C++ Vertex class.

13





3 Background

3.1 Related Work

BFS and DFS are the most fundamental ways of traversing graphs. For sequential

execution, the BFS algorithm is essentially defined by the data structure used

to store the graph, as its fundamental operation is to iterate over the edges of a

given vertex. However, parallel implementation of BFS, particularly on distributed

memory systems, is far more complicated. Consequently, there are far more

possibilities for algorithm design and performance optimization.

While parallel BFS has been studied earlier [GB84], the topic gained widespread

interest in the previous decade on distributed memory computers [GL05; Yoo+05],

on shared memory [BM06; KS05], and on GPU systems [HN07]. The establishment

of the Graph500 benchmark [Mur+10] in 2010 marks a turning point since it

encouraged direct comparability of results. This increased activity on the topic

further, resulting in a large number of publications on that topic [BM11; Che+20;

CP14; HOO11; YFG13]. Furthermore, BFS implementations for GPUs have

also received considerable attention in the recent years [Gai+19; LH15; Wan+16;

YBO20]. In addition to the parallel implementation, algorithmic improvements

have been presented in the last decade. Possibly the most important among those

was the introduction of direction optimizing searches [Bea+11]. At the same time,

efficient parallel algorithms for BFS and DFS were also developed in the context

of other graph problems, such as parallel matching algorithms [AB16; Lan+14;

LPM11].
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3 Background

3.2 Graph Algorithms in the Language of Linear

Algebra

Among the approaches developed for parallel graph processing, we focus on the

linear algebra-based formulation [BG11] of BFS. This is a natural fit since the IPU

is designed for machine learning applications, and is thus geared towards linear

algebra.

A graph G = (V,E), |V | = n, |E| = m can be represented as an adjacency

matrix A ∈ Rn×n with aij = 1 if (i, j) ∈ E and 0 if (i, j) /∈ E. Each row in the

adjacency matrix encodes the outgoing edges of a vertex. In practice, the input

graphs are always sparse. We can use the sparsity and only store the non-zero

values of the matrix in a compressed format. For our implementation, we choose

the CSC format where the number of values non-zero and their positions are stored

for each column. This encoding allows for fast iteration through the column but

prohibits quick Aij lookups as we may need to scan through a whole column.

We can formulate a BFS search step by performing a multiplication of an

adjacency matrix A with a vector x. We initialize the frontier vector x with the

index of the source node s with x(s) = 1. We can perform a step ATx1 = x2 which

yields the next frontier. Further we can union all previous frontiers into an array

to mark the already visited nodes vk = x1 + . . . + xk, where vk(i) 6= 0 if node i was

visited during step k. We can choose A and a further x to be represented by an

efficient sparse data structure (Section 3.5).

The advantage of this representation is that it allows the use of highly optimized

sparse linear algebra primitives to accelerate graph algorithms. It provides a

high level view for understanding and comparing communication patterns. It is

important to note that most applications in scientific computing and machine

learning exhibit sparse matrix dense vector (SpMV) communication, which means

that the same communication pattern repeats over multiple rounds. On the other

hand, graph algorithms such as BFS exhibit sparse matrix sparse vector (SpMSpV)

communication where only some of the vertices or matrix rows/columns are active
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3.3 Bulk Synchronus Parallel

in each round, thus creating a new communication pattern each time.

3.3 Bulk Synchronus Parallel

For aiding the design and understanding costs of parallel algorithms with distributed

memory Leslie Valiant[Val90] created the Bulk Synchronous Parallel (BSP) machine

model. The BSP model does not abstract away communication and separates

the synchronization and communication into different steps, other than the more

common RAM/PRAM model, which focuses on a single global memory region.

The model uses a set of parallel processors, able to run arbitrary instructions,

while each processor has only access to its local memory. Further, each processor

is connected to a network and can exchange data with any other processor. The

exchange between the processors is deterministic and happens in dedicated queues

per processor pair.

Each execution in the BSP model consists of sequentially executed supersteps

S1, . . . , Sn, which are formed from three separate phases shown in figure 3.1, within

a superstep exists no notion of synchronization or order between the processors:

1. Computation: In parallel, work on a local processor with input data from

Si−1 and generate output data for use in Si+1.

2. Exchange: Communicate the output data of the processors to input data

fields of another processor. All communication between processors happen in

this phase.

3. Global Sync: Globally synchronize each parallel processor and end a full

superstep such that all input data for the next computation is locally available

on each processor.

This strict model makes it easy to reason about different costs, possible deadlocks,

and it inherently avoids race conditions. Making it suitable for complex, large-scale

parallel algorithms on distributed hardware.
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Figure 3.1: Visualization of a BSP superstep. Each superstep runs three phases
(compute, exchange, global sync) in series parallel and synchronize at
the end of the superstep. The costs of each step can the read from the
time axis.

The BSP model gained interest in the last years, as it went from a theoretical

bridging model to an implemented model used in libraries and frameworks. Notable

implementations for scientific parallel programming are the BSPLib[Hil+98], how-

ever, more recently attention for the BSP model came from big-data frameworks

utilizing MapReduce[DG08] like Hadoop[DQR12] or Pregel[Mal+10] which are

building upon the BSP model. Further to these additions, the IPU builds its

programming and hardware model around the BSP model.

3.4 Direction Optimizing BFS

The Graph500 benchmark uses scale-free Kronecker graphs that emit a small

diameter and fall under the category of small-world graphs, often found in social

media network structures to benchmark and compare HPC systems.
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All graphs generated under these parameters omit an exponential exploration

rate of the traversed edges, combined with an average high edge-factor this leads

to multiple parents claiming a child in an explosion level of the tree traversal.

Beamer et al.[BAP12] used a bottom-up pass in combination with a common

top-donw pass to reduce the amount of lookups and fights over children in the

explosion levels. A bottom-up pass, opposite to the top-down pass, does not expand

the children list outgoing from the parents but searches from every unvisited node

in the parent list for one that is currently activated in the frontier. Further, they

provide a heuristic to switch between the two phases reaching an on average 25%

of a perfect oracle. Using the direction optimizing BFS (DOBFS) Beamer et al.

archived a more than 3.3−7.8× speedups on Kronecker and other synthetic graphs,

entering the Graph500 leaderboard in November 2011 as the fastest single-core

result.

The top-down pass is efficient when only a few nodes need to be expanded

and the network is unexplored, as all operations are almost certain to only claim

children that have not been seen before. The bigger the frontier gets and the more

nodes have been visited, the more effective a search using the bottom-up pass from

the fewer remaining nodes becomes.

When parallelizing BFS, the direction optimizing variant with the bottom-up

pass is less trivial as their common top-down counterpart as in general O(1) lookups

need to be possible, and the inverted graph needs to be available.

3.5 Sparse Matrix Representation

A matrix that contains mainly zeros and, in important places values, is referred to

as a sparse matrix. We here assume that all of our input graph problems represented

as an adjacency matrix are sparse or can be represented as sparse matrices due

to the fact that graphs, in reality, are often not fully connected but span a bigger

sparse network. Examples of these can be online social networks like Facebook,

where not all people are befriended with all other people in the network graph. A
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sparse matrix needs to be stored differently from a dense matrix where almost every

field is populated with an important value. The techniques to represent sparse

matrices follow compression methods that encode all non-zero values (nnz) and

their coordinates of a matrix. We define sparsity as nnz/dim1(A) ∗ dim2(A)

8

5

7

3

colptr

rowval

num 8 5 3 7

0 1 3 2

0 1 1 3 4

Figure 3.2: Compressed Sparse Column representation of the lefthand matrix
though the colptr, rowval, and num array. The black boxes indi-
cate the access of A(0, 0), as seen the operation works columnwise. The
colptr array bounds the range of values from position 0 to 1, which
only contains the coordinate-value tuple 8 at row position 0.

Probably the simplest way to represent a sparse compressed matrix A is to encode

it as triples of coordinates and their values. This format is commonly referred to as

Coordinate Format (COO). However, the COO format is not efficient for lookups,

A(i, j), even if the coordinates are sorted, as the time to find an element would be

log(nnz) it is rather slow compared to directly accessing a dense matrix.

A more widely used data format is the compressed sparse row (CSR) or com-

pressed sparse column (CSC) format [Gus72], which can be seen as an extension

to the COO format but allows for better access times. We focus on CSC as CSR
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3.5 Sparse Matrix Representation

works analogously, CSC stores all values along the column direction.

CSC densely compresses the nnz values of each row and their position in two

arrays, the num and the rowval array. Like in COO-format the rowval pointers

indicate the row the value from num is residing in, both are of size nnz. The entry

array, containing tuple sizes, pointers to the subarrays bounds in colptr of size

|V |+ 1, as the bounds are compactly stored head to tail. Accessing A(i, j) is fast,

as we can do a constant time lookup to get the range of the column containing all

values by a lookup colptr(i) to bounds colptr(i+ 1), as seen in figure 3.2. Using the

bounds, we can iterate through the rowval array looking for j. If j is not found

the value of the field is zero. This results in a worst-case performance of O(|V |).
However, for operations like BFS multiplication, we are interested in A(i, :), we

can iterate through the rowval bounds and immediately work on the data, making

complexity to access useful data O(1).

Compared to pointer lists, CSC/CSR representations are more compact but can

not be efficiently altered at runtime, thus should only work with static graphs or

matrices.

Much research has been conducted on sparse formats other than COO and

CSR/CSC representations. Some mentionable alternatives are (1) doubly com-

pressed sparse columns (DCSC) which can compress highly sparse data bet-

ter [BG08]. (2) Triply compressed sparse columns (TCSC), which improves upon

DCSC [Mof+19]. (3) Block compressed sparse matrices (BSR) can adaptively

exploit dense structures in matrices [VM05]. We did not continue to work further

with these more advanced compression techniques due to missing hardware instruc-

tions, complexity, and the fact that CSC is at the current memory size the fastest

while still compact. Using BSR would allow us to use IPU hardware to accelerate

matrix operations. However, graphs do not, without costly preprocessing, emit

easy and efficient to work with block structures.
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3.6 Matrix partitioning

The performance is related to the balancing of computing resources over the

whole operation space between different execution units, the better balanced

compute resources get distributed, the better the performance gets, as utilization is

maximized. Especially other domains that work with big dense and sparse matrices

such as Partial Differential Element solvers use matrix/graph partitioners to create

a matrix following performance maximizing properties. An often assumption is

that the input matrix has a structural pattern. However, graph problems are not

required to emit structural patterns. Therefore, we can assume to work with an

unstructured matrix. Graph partitioners can optimize these unstructured matrices

to certain degrees, but in comparison require a lot of preprocessing time. Wang et

al.[Wan+16] have shown that using Metis [KK98], a graph partitioner, does not

result in a big performance benefit. However, randomly permutating the matrix will

in the expected case result in homogenous partitions. This is even true if the input

was highly structural, which under our assumptions would lead to inhomogenous

partitions under an even partition grid and therefore can be corrected.
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4 BFS implementation on IPU

4.1 Sparse Data over Dense Communication

The IPU does not allow dynamically sized data transmissions, we always communi-

cate a dense tensor. To allow for more efficient compute we define a sparse queue

data structure on the dense tensors where a queue Q holds m values. Q is made

from a scalar holding the allocated number of values and a pointer to the dense

data structure containing the values. We need to allocate space in the dense tensor

for the maximum amount of values that Q can hold in any possible scenario. We

call the higher-level structures SpV respectively.

The distributed memory model of the Graphcore IPU forces us to partition our

input problem beforehand; to do so, we divide the input graph and assign one

part to each tile. During the following BFS steps, new tile memory needs to be

allocated in order to store the previous step’s output. Thus, the decomposition of

the graphs for the IPU is similar to BFS implementations for distributed memory

systems rather than GPUs. The graph decomposition remains static during the

algorithm and no additional data is loaded during the entire BFS kernel.

4.2 Parallel BFS

Splitting a subset of vertices with their outgoing edges is called 1D partitioning

because of the row-wise split in the adjacency matrix. Since input, output, and

vertex data must be stored in the tile memory, load-balancing becomes challenging,

especially in the case of graphs with vertices of high degree. Furthermore, 1D
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4 BFS implementation on IPU

partitioning requires allocating O(n) bytes for input and output on each tile, making

it an inappropriate partitioning strategy, even for small graphs.

In contrast to 1D, the 2D decomposition splits the adjacency matrix into a

chessboard-like py × px pattern. Thus, an adjacency matrix A is decomposed into

p square partitions

A =


A1,1 . . . A1,x

...
. . .

...

Ay,1 . . . Ay,x


Each such partition is mapped to an individual physical tile on the IPU. In this

scenario, each partition is only responsible for a subset of the outgoing edges of

each vertex. Therefore, no single partition has the global state of their vertices,

and thus the partitions that own a vertex need to communicate their partial results

to arrive at a single global state. Our 2D data decomposition is very similar to

that used for distributed memory systems [Bul+17; Yoo+05], and we also permute

the vertices randomly. Unlike the 1D partitioning, in 2D, we need to allocate only

O(n/
√
p) bytes for communication with other tiles.

4.3 Parallel Top-Down

Algorithm 1 shows the parallel top-down, 2D, bulk synchronous parallel (BSP)

algorithm. As writing IPU does not require explicit declaration of communication

between the tiles, we describe it as a mapping of input and output tensor data

regions. In the current implementation all partitions are square, and thus the

notation v(c) represents an n/px sized vector with starting offset px ∗ (1 − c). A

processor Pi,j receives inputs from the frontier queue Qj and produces the new

partial outputs represented by a bitmap matrix SAi,j working on the partition

Ai,j. SA is called the intermediate status array. In order to process one BFS level,

our algorithm requires two separate communication steps, each of which requires a

synchronization barrier before proceeding to the next step.
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Algorithm 1: Topdown BFS algorithms, adopted from [Bul+17] and the
linear algebraic version [BM11]

input :A 2D partitioned adjacency sparse matrix A, a source vertex s,
vertex count n, partition count p

output :A vector b containing the parent for each explored i as b(i).
px = py ←

√
p

Q← {s}, SA(:, :)← 0, b(:)← 0
for all processors Pi,j in parallel do

while Q 6= ∅ do
frontier ← Qi . Done through mapping and exchange

for vertex ∈ frontier do
for neighbour ∈ adj(Ai,j, vertex) do

SA(i : neighbour)← true
end

end
Global BSP Barrier . End ComputeSet

Q← ∅
activations← SA(i ∗ py + j : i ∗ py + j + 1, :) . Like AllGather

for v ∈ b do
if v 6= visited then

for incoming ∈ activations(row, :) do
if any(incoming) then

b(row)← visited
Q← Q ∪ {row}

end

end

end

end
Global BSP Barrier . End ComputeSet

end

end

Algorithm 1 shows the parallel top-down, 2D, bulk synchronous parallel (BSP)

algorithm. As writing IPU does not require explicit declaration of communication

between the tiles, we describe it as a mapping of input and output tensor data

regions. In the current implementation all partitions are square, and thus the

notation vc represents an n/px sized vector with starting offset px ∗ (1 − c). A
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4 BFS implementation on IPU

processor Pi,j receives inputs from the frontier queue Qj and produces the new

partial outputs represented by a bitmap matrix SAi,j working on the partition

Ai,j. SA is called the intermediate status array. In order to process one BFS level,

our algorithm requires two separate communication steps, each of which requires a

synchronization barrier before proceeding to the next step.

1. Local Expansion: Each processor Pi,j receives a Qj part of the frontier queue

and uses it to create a new intermediate status array SAi,j

2. Intermediate Status Array Reduction: A reduction that uses the parent array

(i.e., Algorithm 1) to check all partial results of a vertex to determine if a

new parent was found. This step uses all partitions along the row j of size

n/p to reduce into the new frontier queue Qj.

All communication during the local expansion happens column-wise, where the

input frontier Q is sent to all rows in their respective parts, as shown in Figure 4.1.

During the reduction phase, all communication happens row-wise as all data comes

from the partial results of the row to be reduced. In general, the communication

before the local discovery is simpler, since we have a one-to-many communication

in contrast to the reduction phase where a many-to-many communication pattern

is required.

4.4 Mapping Data and Compute

Mapping and allocating data is an important part of the implementation as the

compiler does not automate or abstract data and operation placement away from

the developer. Thus it is necessary to specify a complete mapping of each tensor

partition to each target tile. The same applies when placing vertices of the compute

graph on the IPU: each vertex is assigned to a tile. If the necessary data is already

present on a tile, then no additional overhead is introduced. However, due to the fast

communication between the tiles, this overhead is relatively small when mapping
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Figure 4.1: Layout of the 2D decomposition. We map each partition to a physical
processor tile. Each tile also receives a copy of the sparse input frontier,
along the first dimension, indicated with colored balls as activated
vertices normalized to local offsets on each tile. In the reduction phase
processor tiles receive the output status array of the local expansion
and merge these into a new sparse frontier vector of the next BFS level.

data and compute on a single IPU. Moreover, any unnecessary communication

leads to additional allocations of landing zones for data that is transferred between

the tiles. This is crucial due to the limited memory on the IPU, which means that

suboptimal allocations can cause a computation to fail due to a lack of memory.

4.5 Challenges of IPU Graph Implementations

4.5.1 Memory Alignment

Traditionally memory alignment is done by the compiler via padding. Such padding

can align the values on cache line boundaries, which ensures that they can be

accessed or written efficiently. However, when working with Poplar compute graphs,
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aligning data is not trivial and needs to be done explicitly through the size and

splits of a data section. Without manual data alignment, the popc IPU compiler

allocates rearrangement buffers on the tiles, which costs additional memory. When

working with large tensors, the rearrangement buffers tend to grow quickly, thus

rendering feasible graph instances infeasible.

4.5.2 Memory Management

Each compute-and-data section of the compute graph is statically mapped to a tile

during compile time. It is not possible to change the location of data regions to a

different tile during runtime, and the compute graph does not allow for recursion.

Thus, memory space and offsets needed to receive, transfer, and compute vertices

can be determined during compilation. Therefore, allocating more memory than

available on a single tile leads to an out of memory error during compile time.

With 256KB of addressable space, the per-tile memory is very small compared to

traditional memory systems, making memory management a primary concern.

Like traditional compilers, Grapcore’s popc compiler has data-flow analysis [ASU86].

Hence, we call tensors that will not be eliminated Always Live variables. These

variables need to be allocated during the whole lifetime of the program, variables

that are not Always Live may get optimized away at some point in the program,

and their space can be used by another live variable. For our program, the lifetime

of variables connected to the expansion phase is related to the reduction phase and

vice versa. Table 4.1 gives an overview of the variables allocated by our algorithm.

The factor of two for the input data is due to the fact that we also need to store

the input of the previous round.

The variables from the expansion phase are required in the reduction phase and

vice versa. Therefore, both variables need to allocate space in memory. As data is

also moved within a phase, we use a multiplicator of two to factor in the double

existence of data in the input field during a phase (Table 4.1. We define px ∗ py = p,

np = n/px.
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Usage Type Size Always Live

Expansion Input int16 2n/px False
Expansion Output int32 n/py False
Matrix int16 (n/p + 1) + nzmax True
Backpointers int32 n/p True
Reduction Input int32 2n/px False
Reduction Output int16 n/py False

Table 4.1: Per tile memory allocated by the BFS algorithm. nzmax represents the
largest number of nonzeroes among all partitions. If a variable is always
live it can not be optimized away by the compiler and is always present
in an allocation.

4.6 Optimizations

4.6.1 Removal of Isolated Vertices

The Kronecker graph generator used to generate the graphs for the Graph 500

benchmark produces isolated vertices. The greater the generated graph’s scale, the

larger the ratio of isolated vertices in the generated graph. For our input sizes, we

observe 26% isolated vertices at scale 15, which increase to 36% at scale 19. Other

papers report a ratio of up to 74% [SPK13] for scale 42 graphs.

For BFS, as well as many other graph algorithms, isolate vertices are completely

irrelevant. By filtering these vertices while reading the graph, we can reduce the

dimension of the generated matrix by 1.6× in linear time, accessing every vertex

exactly once. This makes it almost possible to run a scale-20 Kronecker graph

on the IPU and further reduces the space needed to store the CSC matrix. By

reducing the dimension of the matrix, the status array and frontier are also reduced

by an additional factor of 2×, thus saving communication and computation time.

4.6.2 First Reduction Optimization

Our algorithm is required to iterate over all partitions in a row to find an activation

if the parent for this row has not been found at the current level. The number
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of iterations gets smaller the more vertices have already been flagged as found.

Thus, when processing the first BFS level, this number is the highest. For a

single GC2 IPU, we are required to check 34 partition outputs. However, in the

first pass, we know that no vertices have been flagged as visited yet and that

all possible activations can only come from partitions that get the frontier input

section containing the single source vertex. Therefore, we can replace the first

reduction with an algorithm saving O((px − 1)/px) time which is equivalent to

skipping 97% of the instructions at the first level. Thus, instead of first checking

the visited array and iterating over all incoming partitions we directly iterate over

the incoming intermediate frontier from the partition responsible for handling the

source vertex. If an activation was found, we can simply insert it without the

possibility of overwriting any information as we are in the first reduction phase.

4.6.3 Utilizing Threads

Similar to GPUs, the IPU allows scheduling multiple threads per core on a tile to

hide latencies and fill the processor’s pipeline more efficiently. Unlike modern CPUs,

which use simultaneous multithreading, the IPU architecture leverages a barrel

processor design with temporal multithreading of up to six hardware threads. A

feature of barrel processors is that each execution context has a constant instruction

scheduling time as it alternates between active threads in a round-robin fashion.

When six threads are executed in this manner, the memory access latency of six

cycles can be hidden effectively. The Poplar SDK allows us to spawn a compute

vertex into a supervisor mode, which is a restricted administrative context thought

to be the entry point for starting and orchestrating the six worker contexts. The

supervisor can further synchronize context flows into a single sequential point.

Our algorithm utilizes a sparse frontier vector generated in the reduction phase.

We cannot write an interleaved value into the frontier immediately after finding

it during the reduction, as no atomic instructions are available. To synchronize

an unknown amount of value insertions we leverage a prefix sum often found in
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__attribute__((target("supervisor"))) bool compute() {

__asm__ volatile(

"setzi $m1, __runCodelet_WorkerEntry\n"

"runall $m1, $m0 , 0 \n"

"sync " STR(TEXCH_SYNCZONE_LOCAL) "\n");

return true;

}

Listing 2: Vertex source code to launch worker contexts (threads), from a hadware
supervisor context (root thread). We load the vertex base of the worker
and start all six worker contexts, temporarily suspending the supervisor
context until a worker returns. The sync instruction waits for all worker
contexts to return back to the supervisor.

parallel algorithms on GPUs. Instead of computing and immediately inserting

vertices into the output frontier queue, we split the algorithm into three parts:

parallel flagging of frontier vertices in a temporary bitmap vector, synchronized

prefix-sum calculation for the worker contexts, and parallel writes from the bitmap

into the output queue vector adhering to worker regions using the prefix-sum.

In our first few implementation iterations, we used a hand-crafted version written

in assembly. This had the advantage of using all six hardware execution contexts,

offering full throughput. At the time of writing, the Poplar SDK does not allow for

spawning and joining higher-level threads known from operating systems. Neither

does the SDK give an API for managing execution contexts. Falling back to

assembly was a convenient way of controlling the hardware. However, this resulted

in long development times and difficulty fixing bugs, as Graphcore does not provide

a proper debugger.

We worked around this issue by entering the code through the supervisor hardware

context, which is capable of starting contexts with the same vertex layout as the

worker and calling into the bool compute() function of the worker, emulating the

supervisor setup that would usually take place. This was accomplished by using

inline assembly in a supervisor vertex (Listing 2).
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We have implemented our work in under 2000 lines of code, including the code

required to read and process Matrix Market files. We compile our project with the

Poplar 1.3.6 SDK and popc running on a single GC2 IPU.

Based on the guidelines of the Graph 500 benchmark, we split our measurements

into two kernels: (1) the reading, preparing, and loading of the graph onto the

device, and (2) the BFS graph traversal itself. Since our goal is to evaluate BFS

performance on the IPU architecture, we concentrate on the second kernel. We

begin measuring the time of the second kernel t when the search key is loaded onto

the device. We stop measuring when the final BFS round terminates.

Following the codes, we aim to compare our results with [LH15; YBO20], we

count TEPS from both sides for undirected edges. As per Graph 500 specification,

we ignore isolated search keys. Thus, since all our test instances are connected

with the exception of isolated vertices, we always report TEPS:= m/t where m is

the number of non-zero entries in the adjacency matrix that connects visited edges.

Due to limitations in some of the codes, we report the arithmetic rather than the

harmonic or geometric mean over the prescribed 64 searches.

We do not perform any special operations in the first kernel, such as sorting

vertices or finding vertices with special properties. However, we are filtering self-

loops and vertices of degree zero from the graph while converting it into the CSC

format required by our 2D decomposition algorithm. In the 2D decomposition

algorithm we are splitting the matrix into square n/px by n/py sized parts. We

always use a square processor grid, i.e. px = py. Since the number of cores on the

GC2 IPU is 1216, the largest smaller square number is 1156, and thus px = py =
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34. The remaining 60 cores do not take part in the computation.

To measure the runtime of the second kernel executed on the IPU, we measure the

start and end cycle counter of the IPU and divide the difference by the tile frequency

returned by the Poplar SDK. We run our experiments on an IPU-POD system. It

does not have the power limitations of the PCIe version and is thus running at

the full 1.6 GHz. As most runs only take microseconds, thermal throttling is no

concern either. For each run, we randomly generate 64 keys that have at least one

edge connected to them in the input graph. We run the second kernel with all

given keys and take the mean.

5.1 Test Instances

We use both Graph500 instances as well as graphs derived from SuiteSparse [Kol+19]

matrices. The matrices were selected to match a published test set [YBO20] after

removing all instances that are too large to run on the IPU. Table 5.1 lists all the

instances along with their size and diameter. The sources of the graph come from

the following groups:

• kron (n) (e) are Kronecker graphs with 2n vertices and edge factors e. The

edge factor is the average number of edges per vertex. Graphs with larger

values of e typically show higher TEPS as work is being amortized over

a larger number of edges. Graphs generated by the Graph500 benchmark

specification have e = 16 and can be used to compare implementations to

other published Graph500 results. All graphs were generated with R-MAT

parameters A = 0.57, B = 0.19, C = 0.19, and D = 0.05. Note that we filter

isolated vertices. Thus, the number of vertices in the BFS is always lower

than 2n.

• kron g500-logn(n) are Kronecker graphs from the 10th DIMACS imple-

mentation challenge. Despite the SuiteSparse name, these graphs are not

conforming to the Graph500 benchmark, as they have an edge factor of 48,
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but they use the same R-MAT parameters as the Graph500 instances.

• G43 represents a 1% sparse uniformly random matrix.

• coAuthorsDBLP and coPapersDBLP are academic research interaction

and cooperation networks.

• Journals represent co-readerships in magazines.

• delaunay (n) are planar graphs from the 10th DIMACS implementation

challenge. They are generated by the triangulation of points in a flat area,

with size 2n.

• loc-Gowalla represents friendships of a social network based on location

data retrieved from the SNAP suite.

• ship 003 represents a 3D mesh of a structural problem by the DNVS group.

5.2 Comparison Platforms

As the Graphcore IPU is a completely new architecture, it is crucial to assess its

performance in comparison to established processors. For comparison with the

GPU we use two state of the art codes: Enterprise created by Hang Liu and H.

Howie Huang [LH15] and Gunrock by Yangzihao Wang et al. [Che+20; Wan+16].

The Gunrock1 and Enterprise2 codes were both executed on an NVIDIA Tesla

V100-SXM3 with 32GB of memory compiled with nvcc 10.1 and clang 11.0.0. Like

the IPU, the V100 runs at 1.6 GHz.

As the performance benefits of the GPU over the CPU are well established, we

consider this the primary point of comparison. However, we also study CPU perfor-

mance. For that purpose, we use the Graph 500 BFS reference (Ref) implementa-

tion [Mur+10] which relies on MPI, a sophisticated MPI/OpenMP implementation

1Git commit: 5ee3df5, Online: https://github.com/gunrock/gunrock
2Git commit: 426846f, Online: https://github.com/iHeartGraph/Enterprise
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provided by Yasui et al. [YFG13] from Tokyo Institute of Technology (TITech),

and the BFS implementation from the GAP benchmark suite [BAP15]. The latter

has the advantage that it reads the Matrix Market format. We thus use it for

comparison on SuiteSparse matrices outside of Graph500.

We run all three codes on two dual-socket CPU platforms, an AMD Epyc 7601

with 64 total cores, and an Intel Xeon Gold 6130 with 32 total cores. Since the

CPUs are not the focus of this paper, we refer the reader to online resources34

or the manufacturer’s documentation for more information about their technical

specifications. The codes are compiled with gcc 6.1.2 and run with MPICH 3.3.

3https://en.wikichip.org/wiki/amd/epyc/7601
4https://en.wikichip.org/wiki/intel/xeon_gold/6130

36

https://en.wikichip.org/wiki/amd/epyc/7601
https://en.wikichip.org/wiki/intel/xeon_gold/6130


5.2 Comparison Platforms

SuiteSparse

Name Diam Vertices Edges degmin degmax degavg

G43 4 1K 10K 7 36 19.98
coAuthorsDBLP 24 300K 978K 1 336 6.54
Journals 2 124 6K 19 124 97.32
coPapersDBLP 23 540K 15M 1 3299 56.41
loc-Gowalla 16 197K 950K 1 14730 9.67
ship 003 58 122K 4M 18 144 66.43
delaunay n12 36 4K 12K 3 14 5.99
delaunay n13 49 8K 25K 3 12 5.99
delaunay n14 65 16K 49K 3 16 6.00
delaunay n15 87 33K 98K 3 18 6.00
delaunay n16 119 66K 197K 3 17 6.00
delaunay n17 167 131K 393K 3 17 6.00
delaunay n18 228 262K 786K 3 21 6.00
kron g500-logn16 6 66K 2M 0 17998 74.96
kron g500-logn17 6 118K 5M 0 29936 78.04
kron g500-logn18 6 236K 11M 0 49163 80.74
kron g500-logn19 7 432K 22M 0 80675 83.90

Generated

Name Diam Vertices Edges degmin degmax degavg

kron19 16† 8 356K 8M 0 40329 29.53
kron19 16.2† 8 356K 8M 0 40389 29.53
kron19 16.3† 7 356K 8M 0 40326 29.53
kron18 16† 8 197K 4M 0 25336 29.04
kron17 16† 7 118K 2M 0 15759 28.45
kron16 16† 8 66K 1M 0 9763 27.76
kron15 16† 6 33K 524K 0 5925 26.95
kron19 48 7 432K 25M 0 78705 82.51
kron19 32 8 393K 16M 0 62468 56.71
kron18 128 6 236K 34M 0 77348 190.98
kron18 96 6 236K 25M 0 67737 148.63
kron18 64 7 236K 17M 0 55571 103.80
kron18 32 7 236K 8M 0 38505 55.35
kron16 32 7 66K 2M 0 14208 51.94
kron15 32 6 33K 1M 0 8604 49.84
kron17 32 7 118K 4M 0 23589 53.75

Table 5.1: Overview of the test instances. All graphs are undirected. Thus their
adjacency lists contain twice as many entries as the number of edges.
The diameter represents the longest path found during the BFS runs.
Datasets marked with (†) conform to the Graph500 benchmark specifi-
cation.
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6 Experimental Results

6.1 Performance Comparison Experiment

Our experimental results are collected in Figures 6.1 and 6.2. They show our

performance on the IPU compared to the GPU codes on the V100 and GAP

on the Intel Xeon, along with the speedup of the IPU compared to the fastest

alternative. Our work shows the highest speedups for very small instances. This is

understandable since the CPU and GPU codes are not designed for such instances.

However, on the largest and thus most relevant Kronecker instances that fit in IPU

memory, we still observe a speedup of about 1.5×.

For the Suitesparse graphs, we observed 3× speedups for smaller and 1.5×
speedups for the larger DBLP instances over Gunrock, which is the best alternative

here. An exception is a larger and thus higher diameter delaunay graph which

exhibits little parallelism. On average, there are far fewer vertices in the frontier

each round than the IPU has threads, thus making the wide parallelism inefficient.

As a result, the CPU performs better than both IPU and GPU, although the

difference between CPU and IPU is small. The only instance where the GPU

exceeds IPU performance is the very small and dense Journals, and even there, the

difference is very small.

6.2 Graph 500 Scaling Experiment

In an additional experiment, we show the performance of the IPU in the context of

the scaling behavior of other BFS implementations. Results are shown in Figure
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6 Experimental Results
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Figure 6.1: Performace of our code compared to CPU and GPU for the Kronecker
graphs.

6.3. We observe that the CPU type has little influence for all three codes. On the

other hand, the TiTech code is almost an order of magnitude faster than GAP

and the reference code, reaching almost 10 GTEPS. The CPU codes seem to reach

maximum performance at Scale 22.

The GPU implementations are consistently faster, with Gunrock reaching almost

100 GTEPS at Scale 24. It also maintains a consistent and substantial lead over

Enterprise. Furthermore, while ours starts with a large advantage at Scale 15, the

gap closes to 1.5× at Scale 19. Thus, due to the limitation in IPU memory, it is

not possible to say at which scale maximum IPU performance will be attained

and whether it would be faster than Gunrock on the V100. Since the larger

instances have a higher fraction of isolated vertices and removing such vertices has

a substantial effect on IPU performance, it is possible that the IPU would maintain

its lead if it had more memory.

An important insight from these results is that implementations may affect

performance more than the hardware platform. This effect is certainly visible for
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6.2 Graph 500 Scaling Experiment
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Figure 6.2: Performace of our code compared to CPU and GPU for the Suiteparse
instances.

the CPUs. Furthermore, GPUs were initially not widely considered a suitable

architecture for BFS, but steady algorithmic advances have made GPUs highly

competitive for the specific problem of BFS on Kronecker graphs.

In addition to direction optimization [Bea+11], sophisticated GPU codes explicitly

cache the status of high degree vertices in shared memory during the backward

search phase, as suggested for the Enterprise BFS code [LH15]. This obviates

the need for about 80% of all status queries, thereby improving performance

dramatically. However, the technique is far less effective for other types of graphs.

Furthermore, it creates a point of performance that depends on the size of the

programmer-controlled shared memory. For both GPU codes, performance seems

to decrease when going towards Scale 25. Naturally, the IPU cannot replicate this

technique since it lacks a memory hierarchy in which such caching could take place.
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Figure 6.3: Performance of G500 Kron-N -16 graphs by scale on all tested codes
and architectures.

6.3 Memory Usage

During our experiments and development, we also analyzed the total memory used

per tile, as this is an essential part of programming the IPU. Small mistakes often

resulted in a huge memory spike making compilation or running bigger instances

impossible. Figure 6.4 and Figure 6.5 were generated through PopVision a tool

dedicated to analyzing the IPU.

Figure 6.4 shows the biggest Kronecker graph that can fit on the IPU. Doubling

the size would lead to overcommitted tiles, henceforth making it impossible to

compile.

An insight from this is that data reduction by algorithms or using well aligned

or compressed data types can result in a great benefit in runtime or instance size.

During our development, we reduced the memory footprint by more than 2× making

it possible to fit a Kronecker-19-16 graph instead of only an Kronecker-17-16.

Furthermore, with more vertices, we saw a steep linear increase in occupied

memory. This can be explained by the storage format (CSC/CSR) as the required
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6.4 GreenGraph500

Figure 6.4: Maximum memory usage of the 1216 tiles on the IPU over the course of
its execution for a Kron-19-16. The black line indicates the maximum
available memory per tile.

space for storing the matrix is 2 ∗√p ∗ |V | (Table 4.1), where most of the occupied

space will be used to store the structure of the submatrix instead of the contained

values.

6.4 GreenGraph500

With a peak performance of 38.58Gteps on a Kronecker-19-16 input graph and a

nominal power usage of 150W , the IPU could be placed 10th on the small graph

input problem data leaderboards of November 2020. The theoretical performance

per watts is equal to 2573Mteps/W . However, these results are theoretical as we

do not adhere to the GreenGraph500 datacenter humidity, temperature, and power

measurement specifications. Nonetheless, it can be assumed that the IPUs do not

exceed their power limit constantly. Therefore leaving the possibility for a better

efficiency rating.
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6 Experimental Results

6.5 Intra Code Performance Overview

PopVision allows visualizing the BSP phases per tile. We could observe that

the majority of time is spent in computation, and the rest is similarly shared

between synchronization and data exchange. While exchange servers the purpose

of communication, synchronization is rather unwanted as it does represent idle tiles.

Further, in the execution profile, the square nature of the algorithm is visible as the

bottom tile row is idle during most of the execution time. Some Poplar of the shelf

library function, which only run for a short time, are able to use 100% of the tiles

and can be seen as small red lines spanning from the top to bottom of the profile.

The uneven spikes in the first iterations can be explained through the very sparse

early activation and expansion of the BFS steps, as work initially is unevenly

distributed, in the later execution phases (seen in the middle) most nodes get

visited at once, creating an overall saturated and balanced computation phase.

Figure 6.5: Execution profile for a Kron-19-16. Visualizes, how time and resources
are spend. The red indicates computation, the blue data exchange, and
the yellow synchronization phases.

44



7 Discussion

We have tested our BFS code on the IPU and achieved speedups between 0.96×
and 4× over the fastest GPU and CPU codes, with a typical speedup of 1.5×
for the largest feasible Kronecker graphs. The GPU results could certainly be

improved by running on an NVIDIA Ampere A100 or AMD Instinct MI100 GPU,

while the IPU results will benefit from the larger memory and increased core count

of the M2000 IPU once it becomes widely available. However, the M2000 IPU

does not provide a large increase in memory bandwidth or clock frequency, which

means that the latest hardware generation could close the current gap between

GPU and IPU to some extent. Even so, we expect that the IPU will maintain a

lead for most instances. Furthermore, the Kronecker graph generator used for the

G500 benchmark, for bigger graph instances will result in a higher degavg possibly

allowing the next generation of IPUs to get a performance increase by solving

bigger instances in memory.

Furthermore, based on the memory bandwidth of the IPU, it is conceivable

that a far higher performance is possible. During the first few years after its

inception, the Graph500 [Mur+10] performance results increased massively, but the

improvements have slowed down substantially thereafter. While we have considered

several optimizations on the IPU, we are far from having exhausted its possibilities.

We were not able to show performance improvements via direction optimizing

search, although in principle such algorithmic improvements can be applied on the

IPU. Thus, it is likely that faster Graph500 results will appear in the future.

Naturally, the small memory of the IPU limits its application to real-world

problems. Furthermore, it is debatable whether it is fair to compare an SRAM
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7 Discussion

based device to a DRAM based processor since the IPU is essentially running out

of what would be a cache on a CPU. However, our results indicate that the CPU

does not experience a similar speedup when running on the smallest instances,

which certainly fit inside the L3 cache of the Intel Xeon or AMD Epyc. This is

consistent with an observation from the 2018 Turing lecture [HP19], which points

out that programmer controlled scratchpad memory offers significant performance

advantages compared to transparent general-purpose caches. In the case of the

IPU, no additional programming complexity is incurred by this, since the memory

hierarchy only has a single level.

During our development, we have observed that implementing irregular algorithms

is challenging due to the static compute graph and the compile-time required

communication patterns and transmission sizes. However linear algebra, even with

the addition of sparsity, maps well to the concept of predefined communication

flows, we have shown this in this work. However, algorithm designers and algorithm

engineers will have to work around these constraints or reformulate algorithms which

makes general-purpose programming or porting algorithms efficiently challenging.

Further, as all programs follow a bulk synchronous parallel pattern we need

to take great care of unbalanced operations within a superstep as strugglers are

stopping all other cores from continuing computing. Henceforth, we have also

observed that interleaving inhomogeneous Verticies needs to be done carefully

as the performance can drop because of a single long-running Vertex. Splitting

long-running operations into smaller operations and distributing them throughout

different supersteps is tedious but can improve the overall performance.

We found the hardware architecture adequately to understand. However, the

compiler sometimes caused us performance-related problems i.e misaligned memory

slicing of tensors can cause double alignment copy buffers, which created a 2x

memory and compute footprint. Therefore, we heavily relied on the PopVision

tool from Graphcore, which allows us to visually inspect the memory regions to

uncover compiler behavior, hardware aspects, and exchange and data movement.

Furthermore, the PopVision tool was used to visualize unbalanced computations
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and find bottlenecks in the sparse matrix computation and memory layout.

Graphcore intends to use threads for non-communicating context parallelization.

We are working around the intended use-case by spawning worker contexts from

the supervisor like one would create threads. We are using prefix sums, common

from GPU algorithms, to dynamically distribute work between workers. However,

the IPU GC2 is missing crucial instructions such as an integer divide or modulo

to even more efficiently implement work splitting routines. The missing integer

instructions are also limiting us in algorithmic design choices. As atomics are not

implemented it is at the time of writing impossible to coordinate asynchronous

memory operations. Atomic memory operations will allow for replacing the status

arrays with dense bitmaps reducing the memory usage.

Most time developing the project was spend on preparing data for the IPU, and

generating the compute graph. Only 150 of the 2000 lines of code are written to

run on the IPU, the remaining lines are doing setup work. The IPU can profit from

a language that allows for rapid prototyping and higher-level abstractions as the

host code is often not performance-relevant.
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8 Conclusion

We have implemented the first BFS code on the Graphcore IPU and thus presented

the first benchmark results of a graph algorithm on that platform. The results

typically show 1.5× speedups over the fastest competing GPU and CPU codes,

thus demonstrating the potential of this new architecture for graph algorithms.

The main limitation to its usefulness is the small memory of the IPU. This means

that it is more suited to algorithms with higher time complexities such as matching,

betweenness centrality, or even NP-hard optimization problems. Furthermore,

kernelization techniques [AK+17; Kay+20] will become even more valuable if they

allow shrinking problems to the point of fitting into IPU memory. However, the

main challenge in future work will be to scale graph problems to multiple IPUs in

order to overcome the memory limitations. While the IPU programming model

extends transparently to multiple IPUs; it is likely that substantial optimizations

will be needed to scale up its performance. Consequently, future work will focus

on scaling BFS to multiple IPUs, as well as use the current code as a basis to

implement more sophisticated graph algorithms.
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9 Future Work

Graphic processing units (GPU) were developed for accelerating computer graphics,

as general-purpose CPUs could not handle the amount of data and computations for

efficiently producing good enough latency or resolution for the human eye. Later,

GPUs were found to be an excellent addition to High-Performance Computation

(HPC) clusters, as they allowed for highly predictable data-parallel computations

such as dense linear algebra. Many algorithms outside of the graphical domain have

been found to get accelerated through the use of GPUs such as machine learning,

scientific computing, and accelerating databases. Every problem can be solved on

CPUs, but some are up to 100x more effective to solve on GPUs, hence the wide

adoption of GPUs in HPC clusters.

New accelerators for artificial intelligence, machine learning, and other domains

are getting developed for speeding up problem-solving in respective fields, as GPUs

are too general in their design or not applicable to specific algorithms. These

accelerators all build on different assumptions and tradeoffs, which sets them apart

from GPUs and CPUs.

We want to research hardware accelerators for their non-domain-specific use

case to explore new possibilities to solve different problems in computer science

efficiently, and other related fields. At the time of writing, these accelerators only

serve a single specific purpose but researching their capabilities beyond the intended

use-case can allow for a similar development to the use of GPUs, in the long term,

accelerating a wide variety of HPC applications. The gap of hardware availability

compared to their usage is caused by, among others, insufficient programmability,

the need for specially-designed or adapted computational algorithms, and the lack
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9 Future Work

of a quantifiable understanding of the realistically achievable performance. All

these aspects require research effort, which will find the broad interest of HPC

operators and enterprises that already see value in such hardware.

Some of these hardware accelerators have the potential of being used for other

purposes as they build on different assumptions than the previous hardware gener-

ations. Most of the accelerators favor a shared nothing memory model instead of a

global memory space, making it possible to fit orders of magnitude more cores onto

a single chip than on a CPU. Cererbas Wafer Scale Engine (WSE), for example,

has 850.000 cores and 40GB on-chip memory divided into 43KB chunks for each

processor. All of these cores together have a memory bisection bandwidth of 20PB/s

and an event-based mesh interconnect of 220PB/s in a single chip. The novel design

and interconnect architecture opens up new possibilities, especially for irregular

data-based due to the event-based design. Another accelerator, the Graphcores

IPU, offers over 1472 cores with six threads and 900MB on-chip memory, again split

between all cores. However, the communication capabilities allow for an all-to-all

interconnect with 8TB/s in a Bulk Synchronous Parallel (BSP) manner. This

allows for independent calculations and fast exchange of sub results throughout

the whole chip, making the architecture promising for many application classes.

Future projects will improve the interface to the current programming model.

C++ requires a constant recompilation of the project, and memory management is

a tedious part of it. The pure efficiency promises of the language are great for using

C++ for often executed applications which can take time to write when knowledge

about features is known from the beginning. However, research is often changing

requirements and is testing a lot of possibilities before reaching a stable point for

publishing. Often these research projects are more written than used. Through

interfacing with Julia, a Python-alike, on-the-fly compiled language, we hope to

bring more expressiveness to researchers and first-time users. The Julia interface

is more concerned with building compute graphs and preparing data, rather than

generating the high-performance vertices as those are; out of our experience, the

most performance-critical parts were not the ones that took the most effort to
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write. Through this Julia interface, we want to combine the performance of the

IPU with the broad and growing scientific ecosystem of Julia.

Another field where GPUs are not highly more performant than CPUs is in

bioinformatics, in the field of genome sequencing. The best CPU implementation

can only achieve 25% of the GPU performance on a single thread, yet as multi-

core/multithreaded processors are common, the GPU has no big advantage over

a general CPU. The reasoning behind this is that the highly data-parallel the

architecture of the GPU does not fit the problem domain well. Therefore, this

indicates the potential for an IPU implementation to overtake GPU and CPU

performance if a large number of irregular working tiles can be used.

We
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