
Graph Clustering for Long Term
Twitter Observations

Community Detection in Incremental
Graphs

Aigars Tumanis

Thesis submitted for the degree of
Master in Distributed Systems and Networks

60 credits

Department of Informatics
Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2021

Graph Clustering for Long Term
Twitter Observations

Community Detection in Incremental
Graphs

Aigars Tumanis

© 2021 Aigars Tumanis

Graph Clustering for Long Term Twitter Observations

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

In recent years, we have seen that the spreading of Fake News in social
media has become a real, potentially life-threatening problem. Discovering
and notifying users about misinformation has become increasingly more
important. This work attempts to tackle this problem from the point
of graph theory, and specifically graph clustering. The objective of this
thesis was to create an approach for clustering on-line graphs that grow
incrementally by continuously receiving new partitions. Such graphs can
appear through the use of scrapers, where data is collected during some
time interval.

The main challenge of working with on-line incremental graphs is that
they fall into the intersection between on-line and off-line approaches,
and as such little to none literature exists on this subject. Through
use of an iterative, exploratory, test-driven method several state-of-the-
art algorithms were thoroughly tested in a range of different scenarios,
with specific intention of using them on on-line incremental graphs. A
novel approach to working with these graphs was proposed and a testing
framework was designed for this purpose.

The tools presented in this thesis were used to design an algorithm for
clustering incremental on-line graphs, called NCLiC. The algorithm was
thoroughly evaluated and shows great promise, both in terms of processing
speeds and in terms of the clusters it is able to detect. The algorithm is
modular in nature and is based on the problem of merging several graphs
together without loss of information. The tests have revealed that NCLiC
is a far superior approach compared to reclustering the graph, as new
partitions are received, and is even competitive with the modern state-of-
the-art algorithms, both in terms of runtimes and the discovered clusters.

i

ii

Contents

1 Introduction 1
1.1 Fake News and Digital Wildfires 1
1.2 UMOD Project . 2
1.3 Topic for the Thesis . 2

2 Motivation 5
2.1 Graph Theory . 5

2.1.1 History . 5
2.1.2 Community Detection 5

2.2 Continuously Arriving Data 6
2.2.1 Data Streaming . 6
2.2.2 Incremental Graphs 6

2.3 Goals . 7
2.4 Contribution . 7

3 Document Outline 9

4 Clustering Theory 11
4.1 What is a Network? . 11
4.2 Properties of Networks . 11
4.3 Community detection . 12

5 Community Detection Problems 13
5.1 Definition of Community . 13
5.2 Graph Partitioning . 13
5.3 Overlapping Community Detection 14

6 Modularity-Based Methods 15
6.1 Modularity . 15
6.2 Modularity-optimization methods 17

6.2.1 Modularity optimization 17
6.2.2 Greedy techniques . 17
6.2.3 Simulated annealing 18
6.2.4 Extremal optimization 18
6.2.5 Spectral optimization 18

iii

7 Other Community Detection Methods 19
7.1 Hierarchical Clustering . 19

7.1.1 Agglomerative algorithms 19
7.1.2 Divisive algorithms . 20

7.2 Partitional Clustering . 20
7.3 Spectral Clustering . 20
7.4 Dynamic Clustering . 21
7.5 Statistical Inference . 22

8 General Properties of Real-World Clusters 23
8.1 Applications on real-world networks 24

9 Clustering Algorithms 25
9.1 Infomap . 25

9.1.1 Overview . 25
9.1.2 Algorithm . 26

9.2 Louvain Method . 27
9.2.1 Introduction . 27
9.2.2 Algorithm . 27
9.2.3 Performance . 28

9.3 Leiden Algorithm . 29
9.3.1 Overview . 29
9.3.2 Algorithm . 29

9.4 SCoDA . 31
9.4.1 Overview . 31
9.4.2 Algorithm . 32

10 Approach 33
10.1 Introduction . 33
10.2 Method . 33
10.3 Evaluation Criteria . 34

10.3.1 Asymptotic Time Complexity 35
10.3.2 Modularity . 36

10.4 On-line versus Off-line Algorithms 37
10.5 Benchmark Networks . 37

11 Exploration Phase 41
11.1 Algorithms . 41
11.2 Tools and frameworks . 42

12 Comparing Off-Line Algorithms 43

13 Off-Line Algorithms on Incremental Graphs 45
13.1 Implementation . 45
13.2 Evaluation . 46
13.3 Summary . 47

iv

14 Comparing Off- and On-Line Algorithms 49
14.1 Implementation . 49
14.2 Results . 50
14.3 Evaluation . 50
14.4 Summary . 53

15 Designing an On-Line Incremental Algorithm 55
15.1 SCoDA-Leiden Algorithm . 55
15.2 Requirements for clustering incremental graphs 56

16 Designing a Merging Clustering Algorithm 59
16.1 Introduction . 59

16.1.1 Process . 59
16.1.2 Definition of terms . 59

16.2 2-split merge . 60
16.3 Merging approaches . 61

16.3.1 Phases of merging . 61
16.3.2 Refinement approaches 62
16.3.3 Testing 2-split of graphs 67

16.4 Testing k-split of graphs . 69
16.4.1 Approaches for base merging algorithm 69
16.4.2 Conducting k-split test 71
16.4.3 Preliminary evaluation 72

16.5 Improving the merging algorithms 73
16.6 Performance of improved merging algorithms 74
16.7 Python-igraph and k-split merging 76
16.8 Conclusion . 76

17 The NCLiC Algorithm 79
17.1 Introduction . 79
17.2 Steps of NCLiC . 80
17.3 NCLiC Example . 81

17.3.1 Whole graph . 82
17.3.2 Initial partition . 82
17.3.3 2nd partition . 83
17.3.4 3rd partition . 84
17.3.5 Final partition . 84
17.3.6 Summary . 85

18 Evaluation 87
18.1 Runtime vs Goodness of Clusters 87

18.1.1 Leiden runtime . 88
18.1.2 NCLiC runtime . 88
18.1.3 Leiden vs NCLiC . 88

18.2 Initial partition size . 90
18.3 Merging and Graph Characteristics 91
18.4 NCLiC vs Current State-of-the-art Algorithms 92

18.4.1 Graph Description . 92

v

18.4.2 Testing . 93
18.5 NCLiC with other clustering base algorithms 96
18.6 Shuffled versus Non-shuffled Graphs 97
18.7 Weaknesses . 98

19 Large Scale Testing 101
19.1 K-merge on DIMACS10 (Leiden pre-clustering) 101

19.1.1 Implementation . 101
19.1.2 DIMACS10 . 101
19.1.3 Results . 102

19.2 K-merge on DIMACS10 (No pre-clustering) 102
19.2.1 Implementation . 102
19.2.2 Results . 103

20 Contribution 105
20.1 Testing of state-of-the-art algorithms 105
20.2 Introduction of incremental graphs 105
20.3 Testing framework for incremental graphs 106
20.4 Incremental graph clustering algorithm 106

21 Future Work 107
21.1 Merging Algorithm . 107

21.1.1 Implementation of Algorithms 107
21.1.2 Using Leiden by contracting network 107
21.1.3 Weighted edges . 107
21.1.4 Additional network modifications 108
21.1.5 Additional merging algorithms 109

21.2 Testing Framework . 109
21.2.1 Add other goodness measures 109
21.2.2 Increase usability . 110

22 Conclusion 111

vi

List of Figures

6.1 Different modularity scores of the same graph [16] 16

9.1 Huffman Codes used in Infomap [37] 26
9.2 Steps in Louvain algorithm [34] 28
9.3 Steps in Leiden algorithm [40] 30

10.1 Comparison of asymptotic running times [54] 36
10.2 Zachary’s Karate Club . 39
10.3 Stochastic Block Model-generated graph 39
10.4 SNAP Twitter Graph . 39

13.1 Communities discovered by the Leiden algorithm 46

14.1 Distribution of graphs by size 51
14.2 Modularity scores of Leiden and SCoDA algorithms based on the

sizes of graphs . 52
14.3 Modularity scores of Leiden and SCoDA algorithms based on the

sizes of graphs, in percent of the sum of each bin 52

15.1 Modularity of the SNAP Twitter graph as the number as edges
from p2 are added to pre-clustered p1 56

16.1 The graph used as an example of refinement-phase strategies . . . 62
16.2 Performance of base merging algorithm variations on k = 100-split

of the SBM-graph . 70
16.3 Modularity of different merging algorithms of the SMB-graph as

the value of k gets bigger . 71
16.4 Modularity variations of k = 100 on Twitter graph 72
16.5 Modularity variations of k=500 with improved merging al-

gorithms on the SBM-graph . 73
16.6 Modularity variations of k=500 with improved merging al-

gorithms on the SBM-graph . 75
16.7 Modularity variations of k=500 with improved merging al-

gorithms on the Twitter-graph 75

17.1 NCLiC Algorithm Steps . 80
17.2 The graph to be clustered by NCLiC 82

18.1 Performance of NCLiC vs Leiden in number of operations 89
18.2 Performance of NCLiC vs Leiden in seconds 89

vii

18.3 NCLiC performance based on initial partition size 90
18.4 Twitter clusters discovered by Leiden and NCLiC 94
18.5 Facebook clusters discovered by Leiden and NCLiC 94

19.1 Modularity retention count . 103
19.2 Performance of NCLiC vs Leiden as k grows on SNAP Twitter Graph103
19.3 Modularity retention count, no clustering algorithm 104
19.4 Performance of NCLiC vs Leiden as k grows on SNAP Twitter

Graph, no clustering algorithm 104

viii

List of Tables

12.1 Off-Line Clustering Algorithms Overview 43
12.2 Performance of the algorithms 44

13.1 Performance of the algorithms on stream-based graph 47

14.1 SCoDA and Leiden average values 50

16.1 Merging strategies on the Zachary’s Karate Club-graph 68
16.2 Merging strategies on the SBM-graph 68
16.3 Merging strategies on the SNAP Twitter-graph 69
16.4 Merging strategies on k-split of SBM-graph (k = 100) 71
16.5 Merging strategies on k-split of Twitter-graph (k = 100) 72

18.1 Characteristics of different graphs 91
18.2 State-of-the-art algorithms and NCLiC 95
18.3 NCLiC performance with different clustering algorithms 97
18.4 NCLiC on shuffled vs non-shuffled edge lists 98

ix

x

Preface

The moment I saw the available spot in the Understanding of Social Media
and Digital Wildfires (UMOD) project, working on detection of Fake News
in Social Media, I knew I had found the topic for my master’s thesis. The
spreading misinformation has always interested me and I am extremely
thankful to Daniel Schröder for letting be be a part of his project. The way
people interact on-line and particularly how information spreads is a topic
which is as hard as it is exciting.

While the COVID-19 virus made it harder to meet with each other,
the on-line communication channels showed us that we can still meet
and interact with each other, in addition to the importance of having
and maintaining social connections. I would therefore like to thank
Hanne Myklebost Nordengen for being there for me and listening to me
babble, even though she had no idea what I was talking about. My
supervisor, Johannes Langguth, has been an integral part of the process and
I cannot imagine how this would have turned out without his guidance
and immense knowledge of the field. I would also like to thank Marius
Borge Heir for reading the roughest of drafts of this thesis and offering his
feedback on it, but also for taking my mind of it when I needed it the most.
And finally, I would like to thank my family and friends for their continued
support and words of motivation.

Thank you all!

xi

xii

Chapter 1

Introduction

— A lie can travel halfway around the world while the truth is
still putting on its shoes

Jonathan Swift [1]

1.1 Fake News and Digital Wildfires

The quote preceding this chapter has been attributed to many people,
among them Winston Churchill, Mark Twain, and John Swift [1, 2].
Regardless of who the original creator was, the quote rang true regarding
the way misinformation is spread and the challenges that arise to convince
people about the truth, once that has happened. The quote has aged well,
and especially today, in the age of social media, the quote has become
very appropriate. With the onset of platforms like Facebook, Instagram
and Twitter, sharing content has never been easier. Users can easily reach
millions of people in just a few seconds and broadcast their opinions and
thoughts on past and current events. Social media has led to possibilities
that previous generations could not even dream of and brought forth the
good, the bad and the ugly sides of ourselves.

In the recent years, online social networks have become increasingly
popular as a news distribution platform [3, 4]. For many users, social
media has become the main source of news and an important factor in
understanding the world around them. While this has the benefit of
important news reaching more people faster, it has also opened a door for
several new problems. The ease with which anyone can claim to have
insight about a specific case or news story has made it easy to deceive
people. This can be done through, for example, a professionally looking
website or by claiming to be a news outlet. Additionally, Facebook,
with its 2 billion users has become a platform for creating echo chambers
where conspiracy theories spread. We have seen this happen several times
in the past, with the emergence of QAnon, waging a secret war against
elite Satan-worshipping paedophiles in government, business and the media [5].
Stories about Hillary Clinton’s pedophile drug ring in the basement of
the Comet Ping Pong fast food restaurant (Pizzagate) [6, 7] and 5G-towers
spreading the COVID-19 virus [8] can be spread at an unprecedented rate.

1

These theories can have real-world consequences, like groups of people
destroying and damaging 5G-towers or arriving at fast food chains with
shotguns to "rescue the children". A lie today can travel around the world
several times before the truth is even conceived.

The increase of misinformation, or fake news, has made the political
landscape more segregated and polarised and has become a worldwide
problem. This fact has been exploited by companies like Cambridge
Analytica, which influenced the behaviour of its targets through the use
of targeted campaigns and purposeful misinformation [9]. To battle this,
several social media companies have launched counteractive measures,
like Twitter flagging potential fake news with an appropriate tag [10],
and Facebook deleting groups that spread misinformation [11] . The
detection and identification of fake news is a difficult task, but an extremely
important one. One way to identify fake news is by studying its spreading
patterns and the underlying communication channels; learn where and
how fake news originate and how they spread.

1.2 UMOD Project

We have seen the devastating potential that misinformation can have on so-
ciety. The speed with which this information can be spread makes manual
verification of news practically impossible, which leads to the need for
an automated misinformation detection system. The Understanding and
Monitoring Digital Wildfires (UMOD) project is focused on understanding
digital wildfires (fast-spreading, inaccurate, counterfactual, or intention-
ally misleading information that quickly permeates public consciousness)
[12] in order to battle them. While there have been some attempts at creat-
ing such systems [13, 14], none of them have been entirely successful. The
goal of the UMOD project is to develop a system that can accurately detect
misinformation, while also respecting the privacy of users and being open
and trustworthy. In order to be able to achieve this, the first step is to invest-
igate the phenomenon of online misinformation by looking at the problem
from the standpoints of both computer and social sciences. The project is
based on this dual approach, with scientists from both fields cooperating
to find a solution to the problem.

In 2019 the researchers at the UMOD project developed the FACT
(Framework for Analysis and Capture of Twitter Graphs) framework [3],
for gathering the graph structure of follower networks, posts and profiles.
The data gathered by the framework serves as the base for further research.

1.3 Topic for the Thesis

This thesis approaches the problem from the computer science perspective.
Graph theory can be utilised in order to understand the spreading of
misinformation in social networks. The observation of clustering of nodes
(community detection) in such networks can be helpful when trying to
understand the propagation of information and disinformation.

2

As this problem is in the intersection of several different fields, amongst
them graph theory, natural language processing, and machine learning, the
problem can and should be approached from several angles. This thesis
will primarily focus on graph theory and especially graph clustering. This
approach can provide a benefit of extracting useful information in near-real
time, as changes in social media happen quickly. The project can benefit
from other approaches, but a good clustering of the underlying graph can
be beneficial to other fields and provide them with useful information for
further exploration of data.

In the world of social media, with potentially endless amounts of data,
the clustering must be done in an efficient manner. This thesis seeks to
explore the field of on-line community detection in order to find the best
possible approaches, either by using the current state-of-the-art algorithms
or creating new ones. The algorithms must be able to work on continuously
arriving data, while being fast and producing good clusters. While the
motivation for this thesis is rooted in the demands of the UMOD project,
the problem is general in its nature and relevant to several problems in
graph theory.

3

4

Chapter 2

Motivation

2.1 Graph Theory

2.1.1 History

In 1735, the Swiss mathematician Leonard Euler found a solution, or rather
lack thereof, for the Königsberg bridge problem - an old puzzle about
finding a path over seven bridges without crossing each of them twice. By
representing each bridge as an edge in a graph between two points on land
and proving that no such path can exist, he made the very first contribution
to the field of graph theory. Graph theory is a branch of mathematics
concerning graphs, i.e. networks of points which are connected by lines.
Much progress has been made since then, and today graph theory is
applied to a wide range of different fields, from social science to chemistry
[15–17].

2.1.2 Community Detection

A graph is a system of components, defined as G = (V, E), where V is
a set of vertices and E is a set of edges between the vertices, showing
some form of connection between them [16]. Community detection, also
called clustering, is the task of grouping together nodes in groups only
using information encoded in the graph topology [15]. This means that
one can find nodes that share similarities by only looking at the how the
graph is built. An example of this may be the Netflix suggestions, where
an algorithm suggests what films a user may like by looking at what other
users with similar preferences have liked. The same idea is also used
for friend suggestions of Facebook and Twitter, where users with shared
connections may be suggested as new potential connections.

Clustering is an essential part of graph theory. This problem has a
long history and has appeared in many fields, including computer science,
and the first algorithms related to this subject appeared in the early 1970’s
[15]. With the rise of social media, the field of community detection has
become increasingly popular due to the increase of the volume and the
variety of data. There are many clustering algorithms available and one of

5

the goals of this thesis is to present and analyse the current state-of-the-art
algorithms in the community detection field.

2.2 Continuously Arriving Data

2.2.1 Data Streaming

Clustering with streamed data (data that is continuously arriving and
needs to be processed as soon as it arrives) [18] is not a new problem.
Especially in the last decade, several papers have been written on the
subject, for example, revolving around counting subgraphs [19] or finding
the minimum spanning tree [20]. In comparison to community detection,
however, with thousands of published articles and papers on the topic, it is
still relatively unexplored.

A data stream can be described as data that is continuously generated
by a data source, that sends data in small-sized records simultaneously [18].
The data needs to be processed sequentially on a record-to-record basis,
meaning that once a record has been processed and a decision has been
made, one can no longer go back and change that decision. Processing of a
data stream is a separate field in data science with different demands and
constraints related to it.

The FACT framework is a Twitter scraper, that continuously retrieves
and processes data about new connections, tweets and retweets. The
problem of clustering the data in this format was the origin for this thesis.
This problem, however, is not limited to the UMOD project, and the
problem was therefore extended to deal with other types of networks as
well as the social media networks. However, the Twitter network was still
considered as the primary target for the clustering algorithms described in
this thesis.

2.2.2 Incremental Graphs

As mentioned previously, there are many algorithms available for cluster-
ing static graphs and several of them will be described during the course of
this thesis. When working with a data scraper, however, additional meas-
ures must be taken. Depending on the amount of information that is being
scraped the data may arrive at different intervals. For the domains of so-
cial media, and the constantly changing landscape of social interaction, the
data will often arrive at a constant rate. When using the static algorithms
the processing time would grow in accordance to the scale of the incoming
data, as the whole graph would have to be reclustered each time. Even-
tually, the amount of data would become too large to process regardless
of the speed and efficiency of the algorithms. Despite the importance of
this problem, it has not yet been explored in the literature, and this thesis
is therefore an important step in shining a light on a challenging, but ex-
tremely interesting part of the field of graph clustering.

The problem of how to cluster continuously growing graphs, where
data arrives in chunks, hereby incremental graphs, is the main focus of this

6

thesis.

2.3 Goals

The main objectives contained within the topic of clustering incremental
social media graphs are to find the best method to extract clusters of nodes
and to implement on-line and/or off-line clustering on incremental graphs.
Additionally, a long-term goal is to use the knowledge acquired to detect
changes in online communities and to find possible triggers that can be
used to predict these kinds of shifts in the future.

The main goal of this thesis is to find a good way to cluster graphs
of incremental nature, as well as to find a good way to test different
techniques efficiently. Due to the lack of related work exploring this
problem, the thesis is formed as quantitative, exploratory work, with focus
on testing different techniques and approaches and to compare them in
order to find the best possible solution to the problem.

An additional goal is to present an approach suited for the problem
presented in the UMOD project in regards to quality and run time.

2.4 Contribution

This thesis proposes a novel way of working with graphs that grow
incrementally, i.e. getting new information in chunks which are larger than
edge-wise streaming, making it infeasible to use either static- or streaming-
based methods presented in literature today. Several requirements are
proposed for working with incremental graphs that are focused on
guaranteeing the discovery of good clusters while limiting the use of
resources like memory and processing power. Additionally, this thesis
presents an approach for clustering incremental graphs and a framework
designed for testing different approaches in terms of speed and ability to
find good clusters in different incremental graphs.

7

8

Chapter 3

Document Outline

The following is an overview of this thesis, including a short description of
chapters contained within.

Chapter 1: Introduction presents the background of this thesis and the
problem description.

Chapter 2: Motivation presents the motivation for this thesis and
introduces incremtental graphs.

Chapter 3: Document Outline provides an overview of this thesis.

Chapter 4: Clustering Theory presents the general theory of graph
clustering.

Chapter 5: Community Detection Problems discusses the problems
found in graph clustering.

Chapter 6: Modularity-based Methods presents the methods revolving
around one of the most popular ways to measure clustering algorithms,
i.e. modulairty.

Chapter 7: Other Community Detection Methods presents additional
methods used in graph clustering.

Chapter 8: General Properties of Real-World Clusters describes the
properties of real-world networks.

Chapter 9: Clustering Algorithms gives a detailed overview of the
several algorithms used in this thesis.

Chapter 10: Approach describes the approach used during this thesis.

9

Chapter 11: Exploration Phase presents the initial exploration and
discovery of the tools used in further work done during this thesis.

Chapter 12: Comparing Off-Line Algorithms presents an overview of a
selection of current state-of-the-art off-line algorithms.

Chapter 13: Off-Line Algorithms on Incremental Graphs presents
performance of off-line algorithms on incremental graphs.

Chapter 14: Comparing Off- and On-Line Algorithms compares per-
formance between an on-line and an off-line algorithm.

Chapter 15: Designing an On-Line Incremental Algorithm presents a
first attempt of creating an algorithm for incremental graphs and lessons
learned from it.

Chapter 16: Designing a Merging Clustering Algorithm describes the
process of creating an algorithm for incremental graph based on lessons
learned.

Chapter 17: The NCLiC Algorithm presents a novel clustering algorithm
for incremental graphs, NCLiC.

Chapter 18: Evaluation shows the evaluation of the incremental cluster-
ing algorithm, NCLiC.

Chapter 19: Large Scale Testing describes and presents tests when
running NCLiC on a large set of various graphs.

Chapter 20: Contribution presents the contribution of this thesis.

Chapter 21: Future Work talks about suggestions for improvement of the
NCLiC algorithm and future work.

Chapter 22: Conclusion concludes the thesis with final remarks and
summary of the thesis.

10

Chapter 4

Clustering Theory

4.1 What is a Network?

A network, or a graph, is a catalogue of a system’s components, often called
nodes or vertices, and interactions between them, called links or edges. This
representation offers a way to describe varying and often complex systems
in a way that allows us to compare and study them while filtering out
the non-important aspects [16]. Just like Euler represented the bridges
in Königsberg as a graph, so can we represent the interaction between
proteins, the interaction in social networks or roads between cities in a
country and have a common way of working with them. Throughout this
thesis, the terms network and graph will be used interchangeably.

4.2 Properties of Networks

When working with graphs, we often use their underlying properties to
discover new information about them that is not easily found otherwise.
The properties of graphs are a direct result of the properties of the nodes
and edges the graphs consists of.

Networks can be directed or undirected. A network is called directed
when all of its edges are directed, meaning that the interaction is one-
way. Undirected graphs consist of bi-directional links, meaning that the
interaction between nodes works both ways. Additionally, directed graphs
can have edges pointing "back", or back edges, making them both directed
and undirected at the same time [16].

Degree Every node has a degree, that is often denoted as ki. In an
undirected graph, the degree of a node i is its number of edges. The total
number of edges(L) in a graph with N nodes can be expressed as

L =
1
2

N

∑
i=1

ki (4.1)

In a directed graph, however, we distinguish between the in-degree of
the node and an out-degree, where one counts the edges pointing to the

11

node i and edges pointing from the node i to other nodes separately.

Average degree An important property of a network is its average
degree, which is the average of all degrees in a network. For an undirected
graph the average degree is given by

〈k〉 = 1
N

N

∑
i=1

ki =
2L
N

(4.2)

In a directed graph it is important to distinguish between incoming
degree, kin

i , and outgoing degree, kout
i . The average degree of a directed

network is

〈
kin
〉
=

1
N

N

∑
i=1

kin
i =

〈
kout〉 = 1

N

N

∑
i=1

kout
i =

L
N

(4.3)

Degree distribution The degree distribution, pk, is the probability that a
randomly selected node has a degree k. For a network with N nodes the
degree distribution is given by

pk =
Nk

N
(4.4)

where Nk is the number of degree-k nodes. One of the reasons
for degree distribution being an important metric is that many network
properties can be computed from pk.

4.3 Community detection

Communities, also called clusters or modules, are groups of nodes, or
vertices, which share common properties or play similar roles within a
graph. Real-world networks often exhibit this community structure, where
nodes can be grouped as friends in a social network or proteins with similar
structures in a biological interaction network. The purpose of community
detection, or clustering, is to detect these community structures by only
using the information encoded in the network [15].

Clustering can play an important role in our understanding of the
world. By clustering, a network one can find new insights about
relationships between nodes in the networks. This can, for example, be
used to suggest new products to users or find key actors in social or
political networks. The problem of community detection, however, is not
trivial and the main elements of the problem itself, like the concepts of
community and partition, are not rigorously defined and require some
degree of arbitrariness and/or common sense [15].

12

Chapter 5

Community Detection
Problems

5.1 Definition of Community

The main problem in graph clustering is to find a definition of a community.
While no definition is universally accepted, and the definition often varies
based on the system at hand, intuition dictates that a community is
often has more edges "inside" than edges between nodes in different
communities. Moreover, communities are often algorithmically defined,
i.e. being the final product of an algorithm, without a precise definition.
However, the intuitive notion is helpful when looking for communities.
From a local perspective, communities are parts of the graph with few ties
to the rest of the system. They can be described as separate entities with
their own autonomy. From a global perspective, communities are often
described as parts of the system that which cannot be removed without
affecting the functioning of that system. In order to determine if this is
the case it can be useful to see if it is different from a random graph.
These graphs are not expected to have a community structure, as the
probability of two vertices gaining a link is the same. This notion is used in
modularity-based clustering algorithm, and will be described later in this
thesis. Additionally, it is natural to assume that similar vertices will often
be in the same communities, and there are ways to discover and compare
such similarities. Among these are to find their distance from each other
in Euclidean space, or to use cosine similarity or the Pearson correlation
coefficient between rows and columns of the adjacency matrix [15, 21].

5.2 Graph Partitioning

Graph partitioning is a fundamental issue in clustering and is an integral
part of parallel computing, circuit partitioning and design of many serial
algorithms. The problem consists of dividing the vertices into groups such
that the number of edges lying between the groups is minimal. In order
for this method to work, one must specify the number and size of clusters.
Specifying the number of clusters is necessary as without it, the optimal

13

solution would be to leave all nodes in the same cluster. Likewise, without
specifying the size of the cluster, the best approach would be to separate
the vertices with the lowest degree. Both approaches would yield results
that are uninteresting [15].

Most variants of graph partitioning are NP-hard, i.e. as least as hard as
an NP-problem (can be solved in polynomial time by a non-deterministic
Turing machine), but there are several algorithms that can perform well,
despite their solutions not being optimal [22]. Many algorithms in graph
partitioning perform a bisection of the graph, iteratively in cases where
more than two clusters are desired. Additionally, one often imposes a
constraint that partitions are of equal size [15].

Algorithms for graph partitioning are generally not good for com-
munity detection, as they need the number of clusters and, in some cases,
their size. These are often not known beforehand. It is more desirable to
receive that information as the output of the algorithm [15].

5.3 Overlapping Community Detection

Much of the focus within community detection has been on identifying
disjoint communities, where a node can only be a member of a single
community. It is, however, understood that users in a social network often
participate in multiple social groups, like family, friends and colleagues;
a researcher can, for example, be active in several areas. Furthermore,
the number of communities a user can be a part of is unlimited. This
happens in other networks as well, such as biological networks, where
a node might perform multiple functions [23]. This notion leads to the
fact that networks can have differing overlapping density, which further
complicates clustering approaches [23].

Due to its importance, overlapping community detection has gained
popularity and several attempts have been made to create good algorithms
[15, 23, 24]. Despite the work done in regards to this problem, there are
still several unanswered questions that have not been fully addressed. The
two most prominent ones are when to apply overlapping methods and how
significant the overlapping is. The question of whether detecting overlapping
communities captures any useful information compared to the disjoint
clustering is largely unaddressed. The significance of clusters has been
explored within the context of disjoint community detection, and can likely
be extrapolated to overlapping clustering as well, but no definitive answers
have been produced yet [23].

14

Chapter 6

Modularity-Based Methods

6.1 Modularity

One of the most challenging problems in community detection is to know
whether the clusters that have been discovered are "good" or "bad". Many
attempts have been made to describe a good cluster, but there is still no
formally agreed-upon definition [15]. Nonetheless, there is a consensus
that quality functions should be used to describe the performance of a
clustering algorithm. A quality function is a function that assigns a score
to each partition in a graph. This makes it possible to rank different
partitions based on a quality function, where the higher number means
better partition. They allow us to compare different algorithms and assess
the goodness of their performance.

Modularity of Girvan and Newman [15, 25] is the most popular quality
function. It is based on the idea that true community structure in a
network corresponds to an arrangement of edges that can be considered
surprising. Modularity is given by the number of edges within a group,
minus the expected number of edges in a similar graph, placed at random
[26]. A random graph is not expected to have a cluster structure, and by
comparing the density of edges within communities between a given graph
and a random one, a goodness measure can be deduced. The graph to be
compared is called a null model and is a random graph, but which matches
the original in some of its structural features.

It is important to choose a correct null-model. One could demand that
the random graph keeps the same amount of edges as the original graph,
but this would not be a good representation of the real-wold graphs as the
degree distribution would be Poissonian, while in the real-world networks,
the degree distribution often follows the Power law. A better null model
would be based on the same degree distribution as the original.

By looking at the difference between the densities of internal and
external edges of communities, one can detect how well a community is
defined. Modularity is defined as follows:

Q =
1

2m ∑
i,j
(Aij −

wiwj

2m
)δ(ci, cj), (6.1)

15

where Aij represents the weight of the edge between i and j, wi is
the sum of the weights of the edges attached to vertex i. If the graph is
unweighted, this would correspond to the degree of that node. ci is the
community to which vertex i is assigned, while the δ-function, δ(u, v), is 1
if u = v and 0 otherwise and m = 1

2 ∑i,j Aij.
This definition leads to several key properties of modularity [16]:

• The more defined communities are - the higher the modularity
score. Meaning that when comparing the modularity scores of two
algorithms, one can find the one that performed better by looking at
their modularity scores. The algorithm with the highest score would
have more clearly defined clusters, resulting in better partitioning,
with the highest possible modularity score being 1.

• Modularity can be 0 zero or negative. By placing the given graph
into one community, the modularity score is zero. If each node in
the given graph is placed into a separate community, the modularity
score will become negative.

Figure 6.1 shows the different modularity scores obtained on the same
graph. The figure shows optimal partition (a), where communities are
clearly separated, suboptimal partition (b), where improvements can be
made, 0-modularity (c), where the whole network is a single community,
and negative modularity (d), where each node is placed in its own
community [16].

Figure 6.1: Different modularity scores of the same graph [16]

Weaknesses While it is generally agreed upon that modularity is a
good measure of clustering, one of its main problems is that is has a
resolution limit that may prevent it from detecting clusters which are
comparatively small compared to the graph as a whole. This is true even
when communities are cliques, i.e. communities with as many internal links

16

as possible. This fact has large practical implications since real-world
networks often consist of many small communities and a few large ones.
Additionally, modularity is highly sensitive to individual connections.
Many real-world networks are reconstructed through experiments and
surveys and may have edges that should not have been there (false
positives). If two small subgraphs happen to be connected with by a few
false edges, modularity will put them in the same cluster, which will skew
the results of the modularity-based algorithms. Another thing to consider
is the null model, which assumes that each vertex can interact with any
other vertex. This can be roughly translated to the notion that every vertex
knows about every other vertex in the graph. While this may be true for
smaller graphs, in huge, real-world networks like the Web and social media
graphs this is not the case. Most users will never interact with, or indeed
know about, other users that are outside of their social spheres.

Another problem with modularity is that the modularity landscape
is characterized by an exponential number of distinct states/partitions,
whose modularity values are very close to the global maximum. This
means that a modularity based algorithm can return several different
community partitions that are extremely different from each other, with no
way of knowing whether it actually is the optimal partition or not. Last but
not least, modularity-based community detection algorithms do not work
on overlapping communities, which exist in real life [15].

6.2 Modularity-optimization methods

6.2.1 Modularity optimization

By definition, a partition with maximum modularity should be the best, or
close to it. Despite some caveats with this assumption, due to the range of
possible solutions close to that maximum, several algorithms can find fairly
good approximations of maximum modularity in a reasonable time [15].
Modularity optimization is the most popular class of methods to detect
communities in graphs and the following sections present and describe the
main ideas of different approaches to modularity optimization.

6.2.2 Greedy techniques

The first algorithm for maximizing modularity was the greedy method,
proposed by Newman [26]. Algorithms that are based on the greedy
method are usually quite fast, but the results compared to other algorithms
are typically not very good. These algorithms use the agglomerative,
hierarchical method where all nodes start in their own clusters, which are
then merged based on the highest modularity gain. Once no gain can be
achieved, the algorithm stops. One drawback of this method is that the
smaller communities tend to be merged into larger ones, even when this
is undesirable, due to smaller communities often yielding poor modularity
gains [15].

17

6.2.3 Simulated annealing

Simulated annealing is a probabilistic procedure for global optimization.
The algorithms are based on the transition between states, which results
in maximized modularity. The states can be defined by "movement"; local,
where nodes are moved between clusters and global, where clusters are
merged and split. This method can come close to a global maximum, but is
quite slow and performs well on graphs with up to 104 vertices [15].

6.2.4 Extremal optimization

Extremal optimization was proposed in order to achieve accuracy compar-
able to simulated annealing, but with significantly higher performance. It
is based on the optimization of local variables, expressing the contribution
of each unit of the system to the global function. One starts from a parti-
tion of the graph into two equally sized groups. At each iteration, the node
with the lowest fitness is shifted to the other cluster, and the local fitness on
nodes are recalculated. The measure is obtained by dividing the local mod-
ularity of the vertex by its degree. The algorithm finds good estimates of
the modularity maximum and performs quite well. It may, however, lead
to poor results on large networks with many communities [15].

6.2.5 Spectral optimization

Modularity can be optimized using the eigenvalues and eigenvectors of
a spectral matrix. By using a modularity matrix, instead of a Laplacian
one, we can find clusters in the graph by looking at the elements in the
graph and their components. If, for example, the matrix has no positive
eigenvalues, the graph has no community structure. Additionally, the
values of the eigenvectors are also informative, as they indicate the level of
participation of the vertices to their communities, i.e. a vertex with values
close to zero are often outliers/border nodes and may be considered to
belong to several clusters. The vertices may also be moved in order to
gain modularity. The spectral optimization of modularity is quite fast and
performs better than extremal optimization, while also being slightly more
accurate, especially for large graphs [15].

18

Chapter 7

Other Community Detection
Methods

While modularity optimization is the most popular clustering method,
other methods exist. The following chapter presets and briefly describes
a selection of such methods.

7.1 Hierarchical Clustering

Many types of graphs, like social networks or protein clustering networks,
have a hierarchical structure, i.e. small clusters of nodes are included in
larger clusters. In such cases, algorithms that detect the multilevel structure
of the graph can be used. Based on the chosen similarity measure, the nodes
are put together in clusters, which in turn are combined into larger clusters.
Based on whether the new clusters are merged or divided, the hierarchical
clustering is split into two categories: agglomerative and divisive [15].

7.1.1 Agglomerative algorithms

The agglomerative algorithms take the "bottom-up" approach, where
clusters are iteratively merged if their similarity is sufficiently high. The
result of this approach is a dendrogram, which can be used to discover
clusters. Additionally, stopping conditions may be imposed to select a
partition or a group of partitions that satisfy a chosen criterion, like a
given number of clusters or optimization of some quality function. While
hierarchical clustering does not require a preliminary knowledge of the
number and the size of clusters, it has some drawbacks. It does not, for
example, provide a way to choose the partitions that represent the system
best, as the results of this approach are based solely on the similarity
measure chosen. Another major weakness of agglomerative clustering is
that it does not scale well, making them too slow to use on large graphs
[15].

19

7.1.2 Divisive algorithms

The divisive algorithms are based on the "top-down" approach, where
clusters are iteratively split by removing edges connecting vertices with
low similarity. The philosophy of divisive algorithms for detection of
communities in a graph is to find edges that connect communities and
remove them, resulting in only similar nodes being connected [15].

Girvan-Newman Girvan-Newman algorithm [25] is the most popular
divisive algorithm. The edges are selected based on the notion of edge
centrality, which denotes the importance of edges based on some property
or process running on the graph. Girvan-Newman focused on the concept
of betweenness, which is a measure of participation of edges in a process.
They split it into three types: edge betweenness, random-walk betweenness and
current-flow betweenness. Edge betweenness is the number of shortest paths
between all vertex pairs. The random-walk betweenness of an edge is given
by how likely a random walker is to visit the edge, or the frequency of its
visits in a network. Current-flow betweenness is defined by considering the
graph as a resistor network with edges having a unit resistance. Comparing
these shows that calculating edge betweenness is much faster than both
random-walk and current-flow [15].

7.2 Partitional Clustering

Another popular class of methods is the partitional clustering. Given
a data set of N points, a partitioning method constructs K (N ≥ K)
partitions of the data, with each partition representing a cluster [27]. The
number of clusters is preassigned, and the nodes are embedded in a
metric space. The points are assigned to different clusters based on the
distance, which represents the dissimilarity between them. The goal is to
maximize/minimize a cost function.

K-means clustering The most popular partitioning technique is k-means
clustering, where the cost function is the total intra-cluster distance,
represented by centroids, or points representing each cluster [15]. Centroids
are real or imaginary locations representing the center of a cluster. The k-
means clustering starts by randomly assigning centroids. The nodes are
then assigned to the closest centroids, representing different clusters. Once
that is done, the centroids are recalculated based on the distance of nodes to
the centroid. This process repeats iteratively, updating the position position
of centroids until either the centroids have been stabilised or the chosen number
of iterations has been achieved [28].

7.3 Spectral Clustering

All methods and techniques in spectral clustering use eigenvectors of
matrices to cluster networks. The methods consist of a transformation

20

of the initial set of objects, which can be nodes in a graph or data points
in some metric space, into a set of points in a space, whose coordinates
are elements of eigenvectors. Once that is done, other techniques, like
k-means clustering can be applied. The main reason for clustering the
points obtained through the eigenvectors instead of just using the similarity
matrix, is that the eigenvectors make the cluster properties much more
evident. By going through the step of finding the eigenvectors, the
clustering is easier and additional properties can be discovered, which
would not be possible through "regular" means [15].

Spectral properties of a graph can be used to find partitions, for
example, by using eigenvectors of the Laplacian matrix. Eigenvectors can
be combined with other techniques, such as random walks, plotting or
conductance to find clustering of graphs.

7.4 Dynamic Clustering

The dynamic clustering algorithms are focused primarily on some form of
changing or shifting of circumstances and entails different scenarios, like
dynamic features, dynamic data and dynamic clusters. Dynamic clustering
algorithms address the challenges that arise when data is non-stationary
and changes can occur at various rates. The clustering algorithms can also
be applied in situations involving large amounts of data, data streams and
incomplete or noisy data [29].

Random walks Algorithms based on random walks can be useful for
finding communities. A random walker spends significantly more time
inside a community due to the high density of internal edges and the
number of paths that can be followed if a graph has a strong community
structure. Random walks can be used to define several characteristics, like
the distance between nodes, the proximity of node pairs to other nodes in
the network, the influence of nodes on other nodes or flow between vertices
[15].

Synchronization Synchronization is a phenomenon in which the units of
a system are in the same or similar state at every time. This can be used to
detect partitions, as the state of nodes in a single community would be the
same for those nodes, while differing from the nodes in other communities.
The challenging part of these algorithms is to find a good evolution
model, such that the state of nodes can be measured. Synchronization
algorithms have been shown to give good results in practical examples and
even have been used to detect overlapping communities. However, the
synchronization-based algorithms may not be reliable when communities
are very different in size and further testing is needed [15].

21

7.5 Statistical Inference

Methods based on statistical inference aim at deducing properties of data
sets based on a starting set of observations and model hypotheses. The
community detection algorithms using statistical inference try to find the
best fit of a model to the given graph, where the model assumes some sort
of classification of vertices, based on their connectivity patterns.

Generative models Generative models are often centered around
Bayesian inference [30], which uses observations to estimate the probability
that a given hypothesis is true. It consists of two elements: the evidence one
has about the system, and a statistical model for that system. The goal is to
determine the parameters of the statistical model in such a way that max-
imises the posterior distribution of the parameters given the model and the
evidence. Bayesian inference is frequently used in the analysis and model-
ling of real graphs, like social and biological networks [15].

Blockmodeling Block modeling is a common approach in statistics and
social network analysis to decompose a graph in classes of vertices with
common properties. The reason for this is to obtain a simplified version
of a graph. Vertices are usually grouped into classes of equivalence, with
two main definitions being structural equivalence and regular equivalence.
Structural equivalence defines vertices as equivalent if they have the same
neighbours. Regular equivalence defines equivalence when vertices of a
class have similar connection patterns to vertices of the other class (ex.
parents/children) [15].

22

Chapter 8

General Properties of
Real-World Clusters

Many papers on clustering present applications on the real systems.
Despite the variety of available techniques, in many cases partitions
derived from different methods are similar to each other. This may point to
the fact that the underlying properties of the graphs are not dependent on
the algorithms used.

One of the first addressed issues regarding the properties of real
communities was whether there is some special distribution of the size
of communities or whether they of roughly the same size. The answer to
this was that there seems to be no characteristic size - small communities
usually coexist with large ones. Additionally, the sizes of communities
seem to follow some form of a power-law distribution [31]. Lescovec et
al. [32] showed by using conductance 1 that communities are well defined
only when they are small in size (about 100 nodes). These communities are
often found in the periphery of the network. The other vertices form a big
core, in which communities are well connected to each other, making them
barely distinguishable.

Looking at graph characteristics, one can look at the roles of vertices
and their participation in the network. The types of nodes a specific
vertex is connected to may point to its function in the graph. In metabolic
networks, for example, the hubs that share most edges with vertices from
other clusters are more conserved across species, meaning that they have
an evolutionary advantage over other vertices.

Additionally, it has been shown that the degree distribution of the
network of communities can be reproduced by assuming that the graph
grows according to a simple preferential attachment mechanism, where
communities with a large degree have a higher probability of interact-
ing/overlapping with new communities [33].

1Ratio between the cut size of the cluster and the minimum between the total degree of
the cluster and that of the rest of the graph

23

8.1 Applications on real-world networks

Fortunato [15] describes that some characteristics are shared between real-
world networks. These are that they often display inhomogeneities, or
variations, and reveal a high level of order and organization. The degree
distribution in such networks is broad and follows a power law, where
few nodes have many connections, while most of the nodes only have a
few links to other nodes. The degree distribution is also inhomogeneous
not only globally, but locally, meaning the high concentration of edges
within groups of vertices and low concentration of edges between groups.
In community detection, this is called community structure, and most of
the algorithms use this fact to detect clusters. Real-world networks often
display hierarchical organization, with clusters being comprised of smaller
clusters, which again are comprised of even smaller clusters.

The ultimate goal of clustering algorithms is to find properties of
and relationships between nodes that are otherwise not visible by direct
observation. While most of the work in the field has been directed towards
finding new algorithms, several works have had a goal of understanding
real systems.

Networks based on social interaction between people have been
studied for decades. However, with the emergence of social media
and other online forms of communication, it has been increasingly
easier to gather large amounts of reliable data to work with. This
has lead to some interesting observations. The study of the Belgian
telephone communication [34] found the linguistic split of the Belgian
population by using clustering. A study of e-mail communications
between the employees of HP Labs [35] detected clusters that clearly
matched the organizational structure of departments and project groups.
A study of Facebook friendships in different American universities [36]
found that communities were organized by class year or by house
affiliation, depending on the university. Other similar experiments have
been conducted, showing that clustering algorithms could detect real-life
patterns of communication and interaction.

24

Chapter 9

Clustering Algorithms

9.1 Infomap

9.1.1 Overview

Rosvall et al. proposed map equation [37] algorithm in 2009. The main
motivation for the Infomap algorithm was the fact that the most popular
community detection algorithms, such as the modularity-based ones, infer
module assignments based on the underlying network formation process.
Rosvall proposed looking at networks as structures for transmitting
information, therefore carrying a flow, and using that information to detect
communities in a network.

Rosvall proposed that networks are characterised as integrated systems
where different components have inter-dependent interactions with each
other, i.e. components A and B have an influence on the components B
and C and so on. These types of networks often carry some kind of
flow that describes the behaviour of different components of the system -
passengers travelling between airports, money transferred between banks
and information exchanged between friends. The composition of the
network dictates this flow and the paper presents the map equation that
utilises this fact. By using the trajectory of a random walker [15] on the
network, we can map the structure of the network. The reason for using
the random walker is that while some networks can have trajectories of
movement, most of them lack this kind of information and the best we
can do is predict this information, based on the possible trajectories the
network structure allows for.

To map the flow, we need to use some code assignment of the flow.
The most efficient way to do this is to use Huffman code [38] - a method
for data compression that uses a binary tree to assign shorter codes to more
frequent nodes and longer codes to less frequent ones. In order to maximise
the efficiency of this, the authors propose to use modules for regions of the
graph where the random walker often spends time in. These regions can be
assigned their own codewords, which can make the path-map even smaller.
These modules, in turn, contain other smaller modules and so on.

The Infomap algorithm can be used on both undirected graphs and
directed graphs. The difference between the two approaches is the

25

Figure 9.1: Huffman Codes used in Infomap [37]

introduction of a small teleportation probability which transforms random
walker into a random surfer. This resembles the main idea behind the
PageRank algorithm [39], proposed by Page and Brin (1999). Additionally,
the algorithm can be used on weighted, as well as unweighted graphs.
In case of weighted graphs, the weights represent the probability of the
random-walker to follow an edge.

9.1.2 Algorithm

The core algorithm is presented as follows: neighbouring nodes are joined
into modules, which are subsequently joined into supermodules and so on.

1. Each node is assigned to its own module.

2. Each node is moved to the neighbouring module that decreases the
map equation the most. If no decrease in achieved, the node is not
moved.

3. Step 2 is repeated each time in a new random sequential order until
no move generates a decrease in the map equation.

4. The network is rebuilt with modules in the last level forming the
nodes at the current level. Nodes are again joined into modules.
This rebuilding is repeated until the map equation cannot be reduced
further.

The core algorithm may be improved by either using submodule
movement, which allows the main algorithm to be applied to submodules or
single-node movement, which allows for the main algorithm to be reapplied
to individual nodes after their placement into modules. The extensions
can be applied together sequentially as long as the clustering is improved.
Since the algorithm is stochastic, it can be reapplied any number of times,
as long as there are gains to be achieved.

Rosvall et al. concludes the paper with the notion about the difference
between modularity- and flow-based approaches. They show how flow-
based algorithms differ from modularity based ones by presenting two
graphs generated from the same underlying network, with the only

26

difference being the direction of links. From the perspective of modularity,
the graphs are identical, while from a flow-based perspective, they are
completely different. They conclude that depending on the goal, different
algorithms may be used - if one was interested in analysing how the
networks were formed modularity may be better. However, if the flow and
dynamics of the network are more important, the flow-based approaches
may be preferred.

9.2 Louvain Method

9.2.1 Introduction

The Louvain Method (LM) [34] was developed and presented by Blondel
et al in 2008. The algorithm utilises the fact that modularity can be used
as an objective function to optimize the clustering of the graph. They
proposed a method for extraction of the community structure of large
networks based on modularity optimization. Due to this problem being
computationally hard, however, different approximation algorithms were
necessary when dealing with large networks. LM uses the modularity
optimization method proposed by Clauset et al. [31] with additional
enhancements in order to circumvent the deficiencies the method has. The
proposed algorithm consists of recurrently merging communities such that
the resulting modularity is maximized.

Until the introduction of the algorithm, the largest network that had
been processed consisted of around 5 million nodes. Using the Louvain
Method (LM), a network of 118 million nodes was processed successfully.
The processing took about 152 minutes, which was unprecedented at the
time.

9.2.2 Algorithm

The algorithm finds high modularity partitions of large networks while
producing a complete hierarchical community structure for the network
- resulting in different resolutions of community detection. The algorithm
is divided into two phases that are repeated iteratively. Figure 9.2 depicts
the steps of the algorithm, where each step is comprised of two phases:
first, modularity is optimized by changing of communities locally, and
second, where discovered communities are aggregated in order to build
a new network of communities.

First phase In a community with N nodes, every node starts in its own
community. For each node pair (i, j), the gain of modularity is evaluated,
and the node is placed in the community that maximizes modularity. If
no positive gain is achieved, i is kept in its original community. This
process is applied until no additional modularity gain is possible. When
this happens, the first phase is complete.

27

Figure 9.2: Steps in Louvain algorithm [34]

Second phase The second phase consists of building a new network
whose nodes are now the communities found during the first phase. Once
this is done, it is possible to reapply the first phase to the newly created
network.

Passes The first and second phases are repeated iteratively, and most of
the computing happens during the first pass, as during the future passes
the number of meta-communities is decreased. The passes are iterated until
no more changes can be done and maximal modularity has been reached.
It is important to mention that the optimum discovered is not a global, but
a local one.

9.2.3 Performance

Blondel et al. reported that the Louvain Method was more effective than
other algorithms at that time, where the network size limits were put
due to limited storage capacity rather than limited computation time.
Tests had shown that on a typical, sparse graphs, the algorithm runs in
a near-linear time, since modularity computation is fast. Additionally, the
algorithm gets faster in later iterations, since communities get merged and
less computations are needed. In fact, the most intensive computation is
done during the first iteration. The resolution limit problem, which shows
that modularity based algorithms merge communities that are smaller than
a given size, seems to be circumvented. The authors of the paper express
that intermediate results may be used to monitor how smaller communities
have been merged into larger ones.

The performance can be further improved by using some simple
heuristics, like stopping the first phase of the algorithm when the gain in
modularity is below a threshold or by removing nodes of degree 1 (leaves)

28

from the original network and adding them back after the community
computation.

9.3 Leiden Algorithm

9.3.1 Overview

According to the paper by Traag et al. [40], the Louvain algorithm has a
major defect which may result in it yielding badly connected communities.
The authors proposed an update of the Louvain algorithm, which they
called Leiden algorithm. It promises that the proposed algorithm yields
communities that are guaranteed to be connected. It should also run faster
than the Louvain algorithm.

According to the authors, the Louvain algorithm may yield disconnec-
ted communities due to the fact that nodes can be moved from one com-
munity to another at any time. The moved node may have acted as a
bridge between two communities. Moving those nodes may lead to these
communities becoming disconnected. When this happens, the community
should be split up, but the algorithm does not take this into account, and
the result becomes sub-optimal. Additionally, the Louvain algorithm may
detect communities that are weakly connected. Thus, in general, Louvain
may find arbitrarily badly connected communities. The authors note that
this problem is different from the resolution limit, which states that smal-
ler communities may be "hidden" in larger communities, regardless of the
underlying structure. This problem persists in several variations of the al-
gorithm. Moreover, the problem seems to be aggravated by iteration, since
the algorithm has no mechanism for fixing the disconnected communities
that appear in the previous iterations.

9.3.2 Algorithm

In order to fix the problems with Louvain, the authors propose a new
algorithm, which guarantees that the communities are well connected. The
algorithm makes use of the smart local move [41], fast local move [42,
43] and random neighbour move [44], which use heuristics for moving
nodes between clusters in a novel way, improving the modularity score
and speed of the algorithm. Figure 9.3 shows the steps of the algorithm on
two levels, the first level considers the nodes of the graph, while the second
one considers the discovered communities from the first step. The Leiden
algorithm consists of three phases:

1. Local movement of nodes (a - b)

2. Refinement of the partition (c)

3. Aggregation of the network based on the refined partition (d - f)

In short, the Leiden algorithm starts from a singleton partition and
then moves nodes from one partition to another. These partitions are

29

Figure 9.3: Steps in Leiden algorithm [40]

then refined. Based on the refined partitions, an aggregate network is
created which again is used as the base for movement and refinement of
communities. These steps are repeated until no further improvements can
be made.

In the Louvain algorithm, an aggregate network is created based on
the partition p resulting from the local moving phase. The idea of the
refinement phase of the Leiden algorithm is to identify a partition pre f ined
where p may be split up into separate communities. The aggregated
network is based on pre f ined, in which it is obtained in the same way
communities are obtained, i.e. every node starts in the same community
and nodes are merged into communities based on their connectivity, which
leads to an increase of their quality function. The way these communities
are merged is chosen based on precomputed probability, as long as the
quality function is increased.

Another important difference between Leiden and Louvain is the
implementation of the local moving phase, where Leiden uses the fast local
move procedure. While Louvain keeps revisiting the nodes until no more
gain can be discovered, in Leiden, only the nodes whose neighbourhoods
have changed are visited. The fast local move procedure keeps a queue of
nodes which should be moved, and when a change in a neighbourhood
occurs, the nodes in that neighbourhood are added to the queue and the
process is repeated until the queue is empty. This is an improvement of
the Louvain algorithm, where nodes are being revisited, independently of
whether they have been moved or not.

The algorithm provides several guarantees; in particular, that it yields

30

communities that are guaranteed to be connected. Additionally, when the
algorithm is applied iteratively, it converges to a partition in which all
subsets of all communities are locally optimally assigned, meaning that no
subset can be moved to a different community.

The paper shows that when comparing the two algorithms, the number
of badly connected communities was higher for Leiden after the first
iteration. However, after only one additional iteration, this number
drastically improved. This was not the case for Louvain, where the
number of badly connected clusters usually increased. Furthermore,
Leiden proved to be able to handle larger networks when dealing with
difficult partitions of large synthetic networks generated with high mixing
parameter (probability of creating edges between nodes). For higher values
of the mixing parameter, Leiden outperformed Louvain by 10 - 100 times
for the largest networks. In regards to the real-life networks, the Leiden
algorithm was reported to be 2 - 20 times faster than Louvain.

9.4 SCoDA

9.4.1 Overview

The three aforementioned algorithms vary in the way they work and
have their strengths and weaknesses. The main challenge for these, and
most of the other clustering algorithms is to scale to the sizes of real-
world networks. Alexandre Hollocou et al. proposed in 2017 a community
detection algorithm that is based on streams of edges, runs in linear
time and scales to large networks. The proposed algorithm is called
Streaming Community Detection Algorithm (SCoDA) [45] and is based
on the observation that if an edge is picked randomly, this edge is more
likely to connect two nodes in the same community than two nodes in
different communities. The main advantage of SCoDA is that it can be
run on networks of sizes that would be prohibitive for most off-line state-
of-the-art community detection algorithms.

Most of the commonly used community detection algorithms are based
on some kind of maximization of a quality function (often modularity) or
other methods, such as random walks, spectral clustering, clique percola-
tion, statistical inference or matrix factorization. Some algorithms designed
for clustering streamed data have also been proposed, such as counting
subgraphs [19], computing matchings [46], finding the minimum spanning
tree [20] or graph sparsification [47]. While many of these approaches
find good clusters in graphs, they are computationally intensive, time-
consuming and fail to scale to the sizes of modern real-life networks.

According to the authors, the SCoDA algorithm has linear execution
time and a low memory footprint as it only stores two integers per node
and processes each edge only once, making it viable for processing huge
graphs of sizes that would be prohibitive for other algorithms.

31

9.4.2 Algorithm

The algorithm uses a streaming approach by processing each edge in
an edge-list separately. Each edge is "streamed" in a random order, by
shuffling the edge list beforehand.

For each arriving edge (u, v) the algorithm places u and v in the same
community if the edge arrives early and splits the nodes into separate
communities otherwise. In this algorithm, the notion of early is that the
current degree of nodes u and v, based on previous edges, is low.

Steps of the algorithm:

1. The degree threshold, D, is chosen based on the degree distribution
of the network

2. shuffle the list (generate a random permutation)

3. place each node is in its own community

4. for each new edge; u joins v if its degree is lower and vice versa. If
the degree of one of them is bigger than a given degree threshold (D),
no action is taken

The degree threshold (D) is the only parameter of the SCoDA algorithm.
According to Hollocou et al., choosing the correct input for this parameter
is critical, as choosing the wrong D can produce significantly worse results.
The authors claim that the quality of the clustering can degrade by about
50 % if the wrong threshold variable is chosen. They propose using the
mode of the degree distribution, i.e. the degree that appears most often
in the graph, excluding the leaf nodes. The authors claim and show that
calculating degree mode takes linear time and produces the best results for
nearly all graphs. In regards to performance, the papers claims that SCoDA
is 10 times faster than the state-of-the-art algorithms, such as Louvain [34]
and SCD [48] (not covered in this paper), and shows better detection scores
on large graphs.

32

Chapter 10

Approach

10.1 Introduction

The Understanding and Monitoring Digital Wildfires (UMOD) project is
focused on understanding the origins and spreading of digital wildfires, as
previously mentioned. In order to achieve this goal, clustering techniques
can be applied, as seen in the FACT paper [3]. Due to the non-typical data
flow of the FACT framework, however, the clustering methods currently
available may be sub-optimal to achieve that goal. The following thesis
explores possible approaches more suitable for this type of problem. The
main focus of this thesis is, therefore, to find the best approach for
discovering clusters in Twitter networks enabling long-term observations.
This was done by looking at the most promising off- and on-line clustering
algorithms, presented in Chapter 3. The algorithms were then tested and
evaluated by their performance and ability to detect clusters in different
scenarios. The findings were then used to design a new algorithm that
worked for the problem.

10.2 Method

This thesis is based on an exploratory, iterative analysis. The preliminary
exploration of literature seems to indicate that there is little to no research
on this subject. Due to this fact, the most important contributions of
this thesis will be the presentation and description of tests and analysis
of results discovered under way. A detailed explanation of the tests
conducted will be presented in each chapter, and the key findings reported
and analysed. These findings will be presented in an iterative fashion,
where the discoveries from previous iterations will present new challenges
and possibilities. The arising questions and problems will lay the
foundation for the next iterations. This iterative way of working will
conclude with a proposal of a possible approach to cluster incremental
graphs in a way that results in good partitions of clusters with a special
focus on runtime.

The method used in the thesis is a mix of qualitative and quantitative
analysis, where the qualitative analysis serves as the base for quantitative

33

analysis. Quantitative analysis can be counted, measured and explained
using data, while qualitative analysis is more descriptive and conceptual,
and can be categorised based on traits and characteristics [49]. For
this thesis, different algorithms will be presented and analysed while
looking at their underlying characteristics and concepts. When analysing
different approaches and algorithms - their strengths and weaknesses
- qualitative analysis will be used. Each algorithm will to be looked
at an individual level but also through the lens of other state-of-the-
art algorithms. However, during the analysis of the performance of
different algorithms, quantitative analysis will be utilised. Additionally,
new information can be gained through testing. In order to achieve that,
the results need to be presented in a clear way that can be used to discover
new possible actions. The results must, therefore, be categorised with care
and precision.

The exploratory approach and the use of qualitative analysis will
lead to a deeper, more thorough quantitative analysis. Each step in this
process will produce more information that will be used in later iterations,
concluding with a presentation of the final discoveries and contributions of
this paper.

10.3 Evaluation Criteria

When working with community detection, it is important to find al-
gorithms with a good balance between the quality of the clusters it dis-
covers on average, and the time it takes to run it. An algorithm that can
find perfect clusters will not be usable if its runtime exceeds what is reas-
onable on the hardware that is available today. An example of this is the
NP-hardness of modularity - while highly useful characteristic, it may not
be run in polynomial time in its pure form. Any efficient modularity op-
timisation algorithms are therefore heuristics [50]. The opposite is also true
- an algorithm that is blazingly fast, but detects poor clusters is unsuitable
for its purpose. Therefore, it is important to find a good balance between
runtime and performance. The goal is to find the best possible clusters in
the shortest amount of time. Since modern-day social media graphs are
nearly boundless in size, a limit on the runtime must be set.

Throughout this thesis, two measures will be used. Firstly, time,
including asymptotic running time, to measure the speed of the algorithms
and secondly, modularity, to measure the performance and the ability
to find good clusters. When measuring the modularity of algorithms,
we must have something to compare them to. Only presenting a
modularity score on its own will not tell us anything useful. Due to the
differing characteristics of networks, different graphs may have varying
maximum modularity scores. Comparing two graphs that have widely
different maximum attainable modularity scores to each other would
be counterproductive. The same is true for runtime, as presenting the
performance of the algorithm in seconds, minutes and hours would quickly
become outdated as better hardware is introduced. A baseline test must be

34

established before proceeding to designing and implementing new types
of algorithms.

10.3.1 Asymptotic Time Complexity

When talking about runtimes of algorithms, it is often counterproductive
to use actual times, as the same algorithms may perform differently on
different hardware setups. Additionally, as hardware gets better, the
performance of the slowest algorithms will get faster. Using asymptotic
time complexity alleviates these problems [51]. The main idea of
asymptotic analysis is to have a measure of the efficiency of algorithms in
order to be able to compare them without the need for implementation and
running of the algorithms on actual machines. The asymptotic notation is
used to measure and compare the worst-case scenarios of algorithms [52].
The following three asymptotic notations are often used to represent the
time complexity for a given algorithm g(n) [53]:

Θ Notation: a theta notation bounds a function from above and below,
defining exact asymptotic behaviour of an algorithm.

Θ(g(n)) = f (n) : there exist positive constants c1, c2 and n0 s.t:
0 ≤ c1 ∗ g(n) ≤ f (n) ≤ c2 ∗ g(n) for all n ≥ n0

O Notation: a way to express the upper bound of the running time of an
algorithm, i.e. it bounds the function only from above.

O(g(n)) = f (n) : there exist positive constants c, and n0 s.t:
0 ≤ f (n) ≤ c ∗ g(n) for all n ≥ n0

Ω Notation: is the least used asymptotic notation. It provides an
asymptotic lower bound on a function.

Ω(g(n)) = f (n) : there exist positive constants c and n0 s.t:
0 ≤ c ∗ g(n) ≤ f (n) for all n ≥ n0

35

Figure 10.1: Comparison of asymptotic running times [54]

Figure 10.1 shows the relationship between often used asymptotic
annotations. The figure shows the growth of a function N, as the input
size n increases. The lower the increase of N, the better. Example of this is
when the asymptotic time complexity is said to be O(1), the runtime would
be the same, no matter the input. This, however, is not the case in real-life,
and linear growth (O(n)) is often the best possible running time one can
achieve.

That said, when comparing different algorithms it can sometimes be
hard to calculate their asymptotic runtimes. It can therefore be useful to
compare the actual running times, as one can present the times as relations
between each other. For example, saying that one algorithm is four
times faster than another may be a good indication of their comparative
performance, especially when they have the same asymptotic running
time. This is the reason for including actual running times in this thesis.

10.3.2 Modularity

In order to be able to conduct good evaluations of different algorithms, a
good way of measuring their ability to detect communities is needed. A
possible approach is to restrict the testing of algorithms to networks with
known ground truths, such as Zachary’s Karate Club [55] or ground truth
graphs from the Stanford Large Network Dataset Collection (SNAP) [56].
However, the number of such graphs available is limited. Furthermore,
many ground-truths are based on assumptions and are often extrapolated
from smaller sample sizes, so the clusters presented in these network sets
may not reflect the actual real-world clusters. An example of this is the
email-Eu-core network [57] from SNAP, which is retrieved from a large
EU institution. One of the apparent problems with this is that having
an e-mail from one department does not guarantee that you are a part of
that department in real life. The person could have changed departments,
but not the e-mail, or could be working on something unrelated to their
department, but still using the e-mail that they have received. While

36

high recall and precision are important for any clustering algorithm, the
incremental graphs set additional limitations on speed and memory. While
not entirely a strict streaming scenario, where the algorithm cannot go back
and redo decisions, the number of such actions should be limited to a
minimum as they are often resource-heavy. While other techniques were
considered, such as Normalized Mutual Information Score (NMI) [58],
modularity is the most used and trusted technique, despite its weaknesses.
It was therefore chosen as the primary way of measuring "goodness" of the
algorithms in this thesis.

10.4 On-line versus Off-line Algorithms

Throughout this thesis the terms on-line and off-line algorithms will be
used. The terms are coined by Richard Karp in 1992 in On-Line Algorithms
versus Off-Line Algorithms: How Much is it Worth to Know the Future [59].
An on-line algorithm is an algorithm that receives a sequence of requests
and performs an immediate action in response to each one. The off-line
algorithm, on the other hand, performs actions once all requests have been
made. It may then change the sequence of execution steps based on the
sequence of input, or as Karp put it: "the off-line algorithm knows the future".
The inherent characteristic of social media graphs, including Twitter, with
data appearing continuously makes on-line types of algorithms more
suitable than their off-line counterparts. When measuring the effectiveness
of the the on-line algorithm Karp argues that one can compare it to the
worst-case scenario of its off-line counterpart. In this thesis, however, the
comparison of the on-line algorithm will be made with the average scores
of the best-performing state-of-the-art off-line algorithm available. While
tremendously harder to achieve good results, if such results are possible,
the contribution of this thesis would be even more valuable.

10.5 Benchmark Networks

Throughout this thesis, many different graphs and networks are used.
Some of the graphs are used on several occasions, in order to establish a
baseline and to be able to compare different algorithms. The most used
ones are:

Zachary’s Karate Club Zachary’s Karate Club [55, 60] is well known in
network science. It is based on a real-life karate club that split right after
the information about the graph had been gathered. The way the club
split makes it appropriate for clustering problems, as it is known how
and why the club split. Unfortunately, the preliminary tests have revealed
that the modularity based algorithms often cluster the graph into three
instead of two clusters, as it is known to have happened. The graph is
small, leading to clustering algorithms running fast, independent of their

37

potential inefficiency, which makes the graph good for preliminary tests.
The graph consists of 34 nodes and 78 edges and is presented in Figure 10.2

A Stochastic Block Model-generated graph When measuring the good-
ness of clustering algorithms, it is often difficult to assess their qualities
when the truth is not known. This is the reason for generating graphs,
where you have control over all the data embedded in them. One of the
ways to generate a graph is by using the stochastic block model. The same
graph has been used throughout this thesis - it resembles clusters that may
appear in a social network, with a high count of edges between nodes in
a cluster and low count of edges between nodes in different clusters. The
way it is generated makes it relatively easy to cluster compared to many
real-life graphs, and also makes it quite fast to run clustering algorithms
on.

For testing purposes, a graph of 1100 nodes and 4 063 edges was created
by using the NetworkX Python library [61]. It consists of 7 communities
varying in size from 50 to 300 nodes1. The graph is depicted in Figure 10.3.

SNAP Twitter Graph The Stanford University Network Database [62]
has a large collection of real-world graphs. The graph was chosen due
to the fact that it is scraped from Twitter, which makes it highly relevant
for this thesis. Additionally, due to its size of over 80 000 nodes and over
1.7 million edges, it is large enough to test for and potentially discard
algorithms with prohibitively high running times. It was also deemed to
be a good representation of real-world social media graphs. The graph is
depicted in Figure 10.4

DIMACS10 The SuiteSpace Matrix Collection [63] is a widely used set
of sparse matrix benchmarks collected from a wide range of applications.
The DIMACS10 set [64] was presented in the 10th Discrete Mathematics
and Theoretical Computer Science (DIMACS) Implementation Challenge,
where the main topic was graph partitioning and graph clustering. The
main goal of DIMACS is stated as follows "DIMACS Implementation
Challenges address questions of determining realistic algorithm performance
where worst-case analysis is overly pessimistic and probabilistic models are too
unrealistic: experimentation can provide guides to realistic algorithm performance
where analysis fails". The graphs consist of both real-world and synthetic
networks. Furthermore, they are split into partitioning problems and
clustering problems. These graphs are highly appropriate for this thesis.

The set consists of 151 graphs varying in size and complexity. The
size varies between 340 and 265 million edges. All graphs are undirected,
making them suitable for computing modularity.

1Number of nodes in each community: 300, 200, 200, 150, 100, 100, 50

38

Figure 10.2: Zachary’s Karate Club

Figure 10.3: Stochastic Block Model-generated graph

Figure 10.4: SNAP Twitter Graph

39

40

Chapter 11

Exploration Phase

11.1 Algorithms

In order to get an overview of the currently existing clustering algorithms,
the work on this thesis started by conducting an exploration phase. During
this phase, different algorithms and their implementations were tested.
This was done in order to find the best algorithms to be used in further
research. Due to the fact that many algorithm vary in performance and
quality of detected clusters, the first step of this thesis was to gather
information about state-of-the-art algorithms and perform tests on the ones
deemed to fit the problem the best. The next step was to find the best
implementations of these algorithms and test them against each other.

During the exploration phase of this thesis, many different techniques
and algorithms were tested and several different tools were found. The
algorithms were tested for speed and modularity score, in addition to
ease of use and ability to be modified. Several research papers were also
explored to find the most promising algorithms for the problem at hand.
Santo Fortunato’s survey [15] was extremely useful starting point for this.
The following algorithms were tested during this period:

• K-core: clusters networks by pruning nodes with degrees less than k
recursively [65].

• K-clique: discovers cliques (groups sharing k-1 neighbours) using the
percolation method [66].

• K-means: uses the notion of centroids to discover clusters [67].

• Greedy modularity: discovers communities by placing each node in
their own community, then merging pairs of nodes that maximise the
modularity the most [26].

• Fast-greedy modularity: an improved version of the greedy modu-
larity approach that can be run on large graphs [68].

• Edge-betweenness based clustering: clustering based on the number
of shortest paths going through a node, which is often correlated with
the "importance" of a node in a network [25].

41

• Louvain method: community detection method based on modularity
optimisation, where each node starts in its own community and then
merged or moved to a different one as long as the modularity score
increases [34].

• Leiden method: an improved version of the Louvain method, that
provides guarantees about the goodness of detected communities
[40].

• Infomap: community detection method based on the idea that a
random walker would visit the most important nodes more often,
than the non-important ones [37].

• SCoDA: streaming community detection algorithm that is based on
the order that the edges arrive in and the likelihood that the incoming
edges are likely to connect nodes that are a part of the same cluster
[45].

11.2 Tools and frameworks

Throughout this thesis, several different tools were used. Python was used
as the primary coding language. While it is not the fastest, it is easy to
create prototypes in. Additionally, it has a large data science community,
meaning that many different packages and tools are available. Since this
thesis is of an exploratory nature, the deficiencies in processing speed of
Python in comparison to languages like Java or C/C++ are not critical for
the end result.

Other tools have also been used, like Gephi [69], a graph analysis
and plotting software, and PyCharm [70], a Python IDE. Furthermore,
several different Python packages were tested, among them NumPy [71],
NetworkX [61], Python-based version of igraph (Python-igraph) [72] and
NetworKit [73], among others. Python-igraph was chosen as the main
package for testing due to its speed, as it is based on C-code with a
Python wrapper. It has a large community and is continuously updated.
Additionally, it has a large library of implemented community detection
algorithms, including most of the aforementioned algorithms and more.
The Simula Ex3 [74] supercomputer was used for processing large graphs
in terms of both quantity and size.

Based on different factors, such as running time and general perform-
ance of the algorithms tested during the exploration phase, four were
chosen to be used in further iterations; SCoDA, Infomap, Leiden, and Louv-
ain. These are described in detail in Chapter 3.

42

Chapter 12

Comparing Off-Line
Algorithms

The off-line algorithms Infomap, Louvain and Leiden, were chosen based
on the findings during the exploration phase. In contrast, SCoDA was
chosen as the most promising on-line algorithm, due to its speed, detection
of clusters and possibilities to modify and extend. The following chapter
will look at how the three off-line algorithms differ from each other and
what that means in a practical sense. While Leiden and Louvain have
many similarities, with Leiden being an extension of Louvain, and InfoMap
being entirely different, it is important to look at the characteristics of these
algorithms in order to be able to compare them. Table 12.1 shows the
characteristics of the three off-line algorithms.

Characteristic Infomap Louvain Leiden

Concept Random walk
Modularity

Optimization
Modularity

Optimization

Complexity O(k2 ∗ E) [75] O(m) 1 O(n log k) 2

Overlapping Yes No No

Directed Yes No Yes

Weighted Yes Yes Yes

Table 12.1: Off-Line Clustering Algorithms Overview

The Louvain and Leiden algorithms are centred around modularity
optimization, while Infomap is based on random walks. While all three
algorithms perform well and can be used on large networks, Louvain and

1Not available, but assumed to be O(m), where m is the number of edges [44]
2Not available, but reported to be 2-20 times faster than Louvain [40] and is assumed to

be O(n log k), where n are the nodes in the graph and k is the average degree [44]

43

Leiden, due to the use of modularity as opposed to Infomap, cannot be
used on overlapping networks. The asymptotic running time was not
available for neither Louvain or Leiden algorithms at the time of writing.
Vincent Traag, however, [44] cites that the running time of Louvain is
assumed to be O(m), where m is the number of edges. Due to several
improvements made to the Leiden algorithm, it is reported to be 2 - 20
times faster than Louvain [40] and is be assumed to be O(n log k), where n
is the number of nodes and k is the average degree [44].

Infomap Louvain Leiden

Time (undirected) 4.42 min 2.27 sec 1.49 sec
Time (directed) 18.5 min N/A1 5.78 sec2

Communities detected 2870 79 77
Modularity (undirected) 0.44 0.80 0.81

Table 12.2: Performance of the algorithms

Figure 12.2 shows the performance of the three algorithms. The tests
were performed on a personal computer3. Each algorithm was run on
a Twitter graph from Stanford Large Dataset Collection (SNAP) [56]. In
order to be able to compare the algorithms, each graph was converted to
an undirected graph. This was done due to the fact that modularity in
its base form cannot be calculated on directed graphs. There are several
papers [76, 77] suggesting modifications to the modularity calculations for
calculating modularity on directed graphs, but this is deemed as being
outside the scope of this thesis. This also resulted in a faster runtime for
Infomap, whose runtime went from 18.5 minutes directed to 4.42 minutes
undirected, corresponding to a 76 % reduction.

There are currently two implementations of the Leiden algorithm
available through the Python-igraph library, built-into the library or as an
extension created by the authors of the Leiden algorithm paper [40]. While
the one built-into the Python-igraph (verions 0.8.x) is generally faster, the
extension has the advantages of working on directed and weighted graphs.
These will be used interchangeably, based on the use case, with the built-in
version being preferred primarily, due to its speed.

The Leiden algorithm had the best performance, both in terms of
modularity score and runtime. Additionally, the modularity score was
about half of the Leiden score. Leiden and Louvain methods appear to
perform equally well, with Leiden finding slightly fewer communities
while getting practically the same modularity score.

The poor modularity score of Infomap was expected as it focuses on
detecting flow in the network, rather than maximizing the modularity
score. The prohibitively large runtime, however, makes it practically
unsuitable for on-line scenarios where speed is essential.

1The Leiden extension of Python-igraph can be run on directed graphs and the score is
based on that.

3ThinkPad X1 Carbon Gen6, Intel i7-8550U, 16 GB RAM

44

Chapter 13

Off-Line Algorithms on
Incremental Graphs

13.1 Implementation

The tests performed in Chapter 12 show how the algorithms perform
in their natural scenario, i.e. off-line. In order to check how the three
algorithms perform when a graph is streamed, special tests must be run.
The test environment should be similar to the live environment in which
the algorithms will be used. However, when working in an unknown field,
it can be beneficial to start with a more simplified version of the problem. In
order to achieve this, the Stochastic Block Model-graph (SBM), mentioned
in Chapter 10.5, was used for this test. The graph was generated in such a
way that the communities are clearly defined. This means that nodes inside
of clusters had many connections amongst themselves and few connections
between nodes in different communities, which should be quite easy for
algorithms to cluster.

Both modularity-based algorithms have a respectable performance
when run once, but during a streaming scenario, the algorithm could
potentially be run an infinite amount of times. Running them each time
edges are added is not a viable solution, as the runtime would make
the fastest algorithms use an unreasonable amount of time. This notion
demands solutions where the algorithms are not run every time but in
intervals. To prove that reclustering on every event is inefficient, a simple
test was created where each time a new edge of the SBM network was
received, the chosen clustering algorithm would be rerun. The results
were recorded and are presented in Table 13.1 as Base time. The tests with
improved performance, presented as Time, were done by going through an
edge list edgewise and adding one node pair (i, j) at a time to a graph. Each
added edge was used to find a sub-graph of the immediate neighbours
of these nodes. The modularity score of the graph was continuously
monitored, and when below a threshold, the chosen community detection
algorithm was re-run on the graph. Otherwise, the new nodes were placed
into communities that they most likely to be in. This community was
calculated by looking at the communities of their neighbours and finding

45

the most common in the nodes’ neighbourhood. The new nodes were
then assigned to that community. This approach cut down the runtime
of the base-case considerably (decrease of 55 - 74 %). All three algorithms
were run with the same parameters to guarantee a fair comparison. The
modularity score, the number of clusters discovered and runtime were
recorded.

Figure 13.1: Communities discovered by the Leiden algorithm

13.2 Evaluation

Table 13.1 shows the performance of the algorithms when testing on a
personal computer1. All three algorithms achieved the same modularity
score of 0.79, and all three detected the same number of communities.
Additionally, all three algorithms found the correct number of nodes in
each community, except Infomap, which only misplaced one node. When
comparing running times, Leiden and Louvain algorithms were the most
efficient, taking just a fraction of the time it took to run Infomap; 3 and 5
seconds respectively, versus 19 minutes runtime of Infomap. Figure 13.1
depicts the clustering result of the Leiden algorithm. Due to the clustering
results being nearly identical, the figure represents the results of the other
algorithms as well.

A fact worth mentioning is that the modularity score of the streaming-
like scenario was the same as running them in the normal fashion, i.e.

1ThinkPad X1 Carbon Gen6, Intel i7-8550U, 16 GB RAM

46

running it once on the whole graph. This appears to point to the
success of the stream-based reclustering method. The approach of cutting
down runtime by "guessing" the incoming node’s community made it
unnecessary to recluster the graph after each event, resulting in faster
runtimes.

Algorithm Base time Time Clusters Modularity

Leiden 10 s 3 s 7 0.793
Louvain 19 s 5 s 7 0.793
Infomap 45 m 34 s 19 m 38 s 7 0.793

Table 13.1: Performance of the algorithms on stream-based graph

13.3 Summary

The performance of Infomap in terms of runtime in the simulated
streaming scenario was disappointing. With all three algorithms running
with the same parameters, the Infomap was not only generally slower
but also had to be run more often than Louvain and Leiden to keep the
modularity score above the threshold. While the latter was expected, the
runtime of Infomap compared to Leiden was 392 times longer. Despite the
possibilities Infomap provides in terms of understanding a network better,
by looking at its flow, the prohibitively large runtimes make it impossible
to use on huge graphs.

47

48

Chapter 14

Comparing Off- and On-Line
Algorithms

14.1 Implementation

Until this point, this thesis has primarily focused on the testing of off-line
algorithms in various scenarios. The topic of this chapter is to compare
the general performance of off-line and on-line algorithms. The SCoDA
algorithm was chosen as the on-line algorithm, as the paper [45] about it,
presented in Chapter 9, suggested it to be extremely fast and able to find
good clusters. The C++ implementation of the algorithm [78], developed
by the creators of the algorithm, Alexandre Hollocou et al., was used.
Leiden was chosen as the off-line algorithm, due to its performance during
the tests, described in Chapters 12 and 13. The Leiden implementation
in the Python-igraph library was used for comparison, also being a C++-
implementation.

Looking at the description of SCoDA there are two obvious problems
with the algorithm - the required shuffling of the edge list and the importance
of choosing the correct degree threshold. Hollocou et al. describe in the paper
that in order to get the best results from SCoDA, the edges of the network
must be shuffled. Furthermore, choosing the correct degree threshold is
critical for the discovery of good clusters. In a real-life streaming scenario
edges would be arriving randomly, with a higher probability of "popular"
nodes receiving more edge and therefore arriving "earlier", as per definition
presented in the paper. The requirement of shuffling edges is therefore
not as pertinent to the real-life scenario. The degree threshold, however,
may pose a challenge when the network characteristics are not known
beforehand.

Because the SCoDA-implementation only had a manual degree
threshold input, the algorithm was run 50 times for each graph, and the
degree threshold number that resulted in the highest modularity score was
recorded.

Both algorithms were run on a set of 5 895 graphs. The set was a collec-
tion of different graphs collected by the supervisor of this thesis, Johannes
Langguth, and consisted of DIMACS10, SNAP and other real-world and

49

synthetic graphs with highly varying characteristics. The modularity score
for both algorithms was calculated was recorded. Additionally, the number
of communities discovered was saved for comparison.

14.2 Results

With
Null-Values

Without
Null-Vales

Number of graphs 5 895 1939
Average number of nodes 157 623 151 477

SCoDA average threshold 7.59 23.1

Leiden average modularity 0.20 0.62
SCoDA average modularity 0.05 0.15

Leiden average communities 32 343 75 977
SCoDA average communities 2 469 7 507

Table 14.1: SCoDA and Leiden average values

Due to the varying characteristics of the graphs tested, several networks
were not suitable for the clustering algorithms to perform. The graphs
that are unsuitable for clustering are, for example, densely connected
graphs, meaning that each node is connected to every other node in the
network. Clustering these graphs would be unreasonable, as the whole
graph would be in one giant cluster. The special characteristics of these
networks resulted in modularity score of 0 for both Leiden and SCoDA.
These results will hereby be called the null-cases or cases with null-values.
Table 14.1 presents the average values for the two cases - with and without
modularity null-values. While it would be interesting to delve deeper into
the null-value graphs in order to find out exactly what happened, these
results are not useful when comparing the two algorithms and the results
from these graphs have been omitted during further processing of data.
"With Null-Values"-column shows average scores, including graphs where
either of the algorithms resulted in modularity score of 0. These graphs are
omitted in the "Without Null-Values"-column.

14.3 Evaluation

From Table 14.1 one can immediately see that the Leiden algorithm
performs much better, achieving a higher average modularity score of 0.62
compared to 0.15 of SCoDA in the Non-null-value set. This also reflects on
the number of times Leiden performed better, which is 1 766. SCoDA, on
the other hand, performed better in just 143 cases. The two algorithms got
the same score in 29 cases. In the cases where SCoDA performed better,
its average modularity was 0.48, while Leiden had a modularity score of

50

Figure 14.1: Distribution of graphs by size

0.11. In the opposite case - where Leiden performed better, the modularity
scores were 0.65 for Leiden and 0.11 for SCoDA. In the rare case of the two
being equal, the modularity was often high, with an average score of about
0.85. Furthermore, in 319 cases SCoDA failed to find any communities,
meaning that its modularity score was 0, while Leiden’s was positive. The
aggregated average modularity of Leiden in those cases was 0.59. This
points to the fact that many of the non-detected communities were defined
relatively well. Further testing may be needed to see exactly why this
happened, but this is considered out of scope for this thesis.

Figures 14.1, 14.2 and 14.3 present the findings graphically. The graphs
in the figures are split into log10-bins for clarity, as sizes of the graphs
range between 3 and 65 million nodes. Figure 14.1 shows the number
of graphs in each bin, with the majority being in the log 4-bin, meaning
that the number of nodes in these graphs is around 104. Figures 14.2 and
14.3 show the performance of the algorithms on the test set. Figure 14.2
shows the average modularity score of Leiden and SCoDA respectively,
partitioned by graph sizes. In order to depict the difference in performance
more clearly, Figure 14.3 shows the share of each algorithms modularity
score of their total sum in each bin, meaning that the more the bar is filled
with the algorithm’s colour, the better it performed on the graphs of that
size.

While SCoDA generally had a worse performance than Leiden, Figure
14.3 shows that SCoDA is relatively competitive with the Leiden in many
cases. SCoDA had similar results on graphs up to a certain size (log 6).
However, both algorithms had a dramatic drop in modularity on graphs
in the log 5-bin. It is not clear why this happened without analyzing
individual graphs in the set. The fact that both algorithms had problems
with this size points to the fact that the graphs in this bin may have had
a topology unfit for clustering. After the drop, Leiden seemed to recover

51

Figure 14.2: Modularity scores of Leiden and SCoDA algorithms based on the
sizes of graphs

Figure 14.3: Modularity scores of Leiden and SCoDA algorithms based on the
sizes of graphs, in percent of the sum of each bin

and perform well, while SCoDA’s performance continued to degrade. This
may point to the fact that SCoDA could not handle the sizes of these
graphs and once it started making errors in clustering, it could not recover.
It is, however, important to mention that SCoDA performed better than
Leiden on the graphs in the log 5-bin, again pointing to the possible fact
that the graphs found in that bin were hard to cluster using modularity
optimization techniques.

It is worth mentioning that the optimal threshold value for SCoDA
found in the tests differs from the one mentioned in the paper [45], which
states that the best result is usually obtained at degree threshold values

52

between 2 and 4. For non-null results of SCoDA, the three values of the
threshold that yielded best results in modularity values above 0 were 39, 48
and 49, with 23.1 being the average chosen threshold for all SCoDA runs.
A possible reason for this may be that the tests conducted by Hollocou et
al. primarily covered real-life networks from the SNAP-database, which
have greatly varying characteristics compared to graphs that were tested
in this chapter.

14.4 Summary

When looking at average statistics of the results of Leiden and SCoDA,
the formar seems to be superior to the latter. After further investigation,
however, SCoDA seems to provide acceptable results for graphs up to a
certain size and, in some cases, is even able to outperform Leiden, which is
a quite more complex and sophisticated algorithm. One reason for SCoDA
being able to outperform Leiden may be the fact that some of the graphs
used in testing had special structures, like lattices, where most of the nodes
are connected with at least one edge. This may have "confused" Leiden and
given an edge to SCoDA, which does not take into account the structure
of graphs in the same manner. These types of networks are seldom seen
in real-world clustering applications, and further tests will exclude these
types of graphs, as the purpose of this thesis is to find graphs that can
perform well in real-world scenarios. The findings also point to the fact
that it is difficult to determine the right degree threshold without knowing
the graph beforehand.

Based on the findings in this chapter, the main takeaway is that when
it comes to graph clustering there is no silver bullet. While an algorithm
may perform well on one type of graph, it may have poor performance
on another. It is therefore important to gather as much information as
possible and conduct thorough testing before committing to an algorithm.
This is especially true when working with algorithms in situations they
were not designed for. Going forward, the main goal will be to design an
algorithm that works on on-line incremental graphs. The design decisions
must reflect that.

53

54

Chapter 15

Designing an On-Line
Incremental Algorithm

15.1 SCoDA-Leiden Algorithm

Based on the findings in the previous chapter and the discovered strengths
and weaknesses in both Leiden and SCoDA, the initial thought was to
merge the two algorithms in a way that combined the strengths of the two
algorithms, while diminishing their weaknesses, leading to an algorithm
that finds high-quality clusters in an on-line scenario. For this purpose, the
Leiden and SCoDA algorithms were merged to create the SCoDA-Leiden
algorithm.

The modifications were as follows: a given graph would be split into
two partitions. The Leiden algorithm would cluster the first partition, and
the result would be saved in the memory. This was done to simulate a
case where some data about the graph is available. The second partition
would be streamed edge-wise, and SCoDA would be run. While this
happened, modularity score would be calculated every 10i edges, where
i is the length of the number of edges in the network, e.g. for edge count
between 7 000 and 30 000, the modularity would be recalculated at 7 000,
8 000, 9 000, 10 000, 20 000, and 30 000 edges. If the modularity score
dropped by 5 % or more, Leiden would be re-run on the whole graph
and clusters would be updated. SCoDA would then continue running on
updated communities. This approach was based on the observation that
when running SCoDA, the modularity decline was relatively small when
staring with good clusters. The steps of the algorithm are as follows:

1. Split an edge list p into two parts: p1 and p2, such that the all of the
edges of p are either in p1 or p2.

2. Cluster p1 with Leiden and store the results in memory.

3. Add p2 to p1 edge-wise. For every 10i edges, check if modularity has
decreased by more than 5 %.

• If yes: recluster the whole graph with Leiden.
• If no: continue.

55

Figure 15.1: Modularity of the SNAP Twitter graph as the number as edges from
p2 are added to pre-clustered p1

Figure 15.1 shows the modularity score of the clustering of the SNAP
Twitter-graph as the p2 is added to p1 edge-wise. The split is done
unequally, with p1 = 30 % and p2 = 70 % of the edge list. The increased
modularity at 300 000 edges is due to the reclustering by Leiden. The drop
just before the increase was more than 5 %, meaning that Leiden had to
recluster the whole graph available at that time. The SCoDA then took
over again, as can be seen by small, continuous drops in modularity from
400 000 edges until the end.

The SCoDA-Leiden algorithm had good modularity preservation, with
the average modularity score being between 90 - 95 % in most cases. The
runtimes, however, warrant a closer look. Due to the linear runtime of
SCoDA, which the algorithm primarily uses, the asymptotic runtime for
the best-case scenario is O(n) plus the runtime of the first Leiden clustering
(L). However, as seen in the tests conducted on SCoDA, as the graph gets
bigger, the quality of clusters degrades, and Leiden would have to be re-
run, adding the runtime of Leiden, each time this happens. The worst
case of this algorithm, may, therefore, be prohibitively large. As the graph
grows, so will the number of times Leiden has to be re-run (y for y ∈ O(n)).
This results in the asymptotic runtime of O(yL), which is prohibitive to be
used efficiently on large graphs. In order to be able to construct a good
on-line incremental algorithm, we must limit the worst case running time.

15.2 Requirements for clustering incremental graphs

Conducting clustering on incremental graphs allows us to set some require-
ments on the algorithms being run. When deciding which requirements
should be chosen, we conduct a thought experiment about what challenges
we will be faced with.

56

Let graph G be of several trillions nodes. When choosing to cluster it,
the size of the graph may be prohibitive for running a clustering algorithm
at once, regardless of how speed- and memory-efficient it is. The graph
must therefore be split into parts that fit into memory and may be clustered
within a reasonable time frame. The result of this is that the graph
will become incrementally bigger by adding new partitions to it. These
partitions must be clustered and merged in a way that leads to minimum
loss of goodness. While clustering the individual partitions is as trivial as
running a chosen clustering algorithm on it, the merging of the clusters
in the memory with the clusters of incoming partitions provides several
challenges, like how to assign clusters of the new partition to the ones in
the memory and when to update clusters of the nodes that have already
been assigned to a cluster. This notion leads us to the conclusion that
the merging algorithm plays a crucial role in the process of clustering
incremental graphs.

Following requirements were proposed as a result of this thought
experiment:

1. The original graph must be stored in an efficient manner

2. The incoming graphs must not be larger than the available memory

3. The incoming graph must be added to the original graph

4. The time to add the new graph must be polynomial in the size of that
graph

5. The success of this addition can be measured in the loss of modularity,
as compared to clustering the graph as a whole.

The aforementioned requirements are set up as guidelines that will be
used in order to build algorithms to be used on on-line incremental graphs.

57

58

Chapter 16

Designing a Merging
Clustering Algorithm

16.1 Introduction

16.1.1 Process

The proposition of requirements for creating a good on-line incremental
clustering algorithm, presented in Chapter 15, demonstrated the need to
develop and test different approaches in an efficient manner. In order to
achieve this, a framework that would allow to test and compare different
merging and clustering algorithms was developed. This development was
split into three steps:

The first step was to create network merging strategies and test them
out on a two-way split of a given graph. In order to be able to
compare the different approaches, the modularity of the merged result
would be compared to the modularity provided by running Leiden on
the whole graph. The performance of the algorithms was rated based
on the minimum loss of modularity after completing the graph merging,
compared to Leiden’s score.

The second step was to extend the partitioning of the graph into several
splits, chosen by the user, and perform the merge of these partitions in
a way that the merged graph would be the exact replica of the original
graph. The clustering result of the merge served as the base for comparing
the merging algorithms in order to find the best approaches.

The third step was to choose the algorithm(s) with the best performance
and, if possible, explore ways to make them better and more efficient.

16.1.2 Definition of terms

In order to describe the tests in a precise manner the following terms will
be used for the rest of the thesis:

59

• G: V ∗ E, where V are the vertices of the graph and E are the edges
connecting the vertices. G is attained through the input edge list.
The baseline modularity will be calculated by running the Leiden
algorithm on G.

• Pk: let G be split into k partitions. Pk is the k-th partition of G. This
graph consists of vertices, VPk and edges EPk.

• Gk: obtained by merging partitions Pk−1 and Pk of G: Gk = Gk−1 ∪ Pk.
The result of merging of Pk−1 and Pk is either Gk or G. Gk consists of
vertices Vk and edges Ek.

16.2 2-split merge

The first step of creating the testing framework was to achieve a successful
merging and clustering of a graph split of two chunks. The edge list of a
chosen graph G was split into two parts P1 and P2, where the user could
change the partition split size between 0 and 100 % in terms of the number
of edges, meaning that if P1 was chosen to be 30 %, the size of P2 would be
the remaining 70 %. P1 and P2 were then saved as two separate edge lists.
P1 was clustered by a preferred algorithm (Leiden in this case), resulting
in G1, and the clusters were stored in memory1, together with its edge list.
Additionally, some data about the network topology, like the degree of each
node, was stored for testing purposes.

P2 was also read and clustered by a chosen algorithm, resulting in G2.
G1 and G2 were then merged using different techniques. The modularity
of the approach and the number of resulting communities was stored, in
addition to the data from a Leiden run on G. Furthermore, the runtimes
were also recorded for testing purposes. The framework allowed for
multiple runs and returned average scores if multiple runs were conducted.
The average scores represented different partition sizes varying from no-
input graphs, i.e. P1 = G & P2 = ∅, to no-starting graphs, i.e. P1 = ∅ &
P2 = G. The size of the split was determined automatically by the preferred
number of runs. A test of five runs, for example, would split G into five sets
of P1 and P2 of different sizes, denoted in percent of edges of G, where Set
1 would be P1 = G & P2 = ∅, Set 2 would be P1 = 0.2G & P2 = 0.8G,
Set 3 would be P1 = 0.4G & P2 = 0.6G, and so on. As the runtime
of the merging algorithm is dependent on the input graph, as described
in point 4 of requirements in Chapter 15, the average runtime would be
a good measure for comparison between different merging strategies. In
order to guarantee that the data is not known beforehand, the edge lists
were shuffled each time before being split.

1Each node was represented as a key-value pair in a dictionary

60

16.3 Merging approaches

16.3.1 Phases of merging

The main limiting factor of the potential merging algorithms was that
they did not have information about the whole graph G, as per the
aforementioned requirements in Chapter 15. An algorithm only had access
to limited part of the Gk−1, in addition to the Pk. The incremental merging
algorithm was split into the two following phases:

Phase 1: Pre-clustering and Merging Phase 1 is centered around the
notion of clustering Pk and roughly merging it with Gk−1 into the resulting
Gk without loss of information. This phase consists of reading Pk and
running a preliminary clustering on it. The processing time of Phase 1
depends almost exclusively on the size of Pk.

During Phase 1, an algorithm would be run in order to cluster and
merge Pk with Gk−1. The merge was performed by comparing the number
of nodes in Gk−1 with the number of nodes in Pk. If Gk−1 was larger than
the Pk, only the nodes that were not present in Gk−1 were added to the
clusters Ck of Gk. If Pk was larger, the nodes that were present in the original
clustering Ck−1 of Gk−1 were moved to the communities discovered by
clustering of Pk. Algorithm 16.1 shows the pseudo-code for this approach.

Algorithm 16.1 Base merging algorithm

Gk ← Gk−1 ∪ Pk
node_community = dict{node : community}
Ck ← leiden(Pk)
if Gk−1.size > Pk.size then

for node in Ck do
if node_community[node] is null then

node_community[node]← Ck.community
end if

end for
else

for node in Ck do
node_community[node]← Ck.community

end for
end if

Phase 2: Refinement Once Phase 1 was completed, the refinement phase
would start. The purpose of this phase was to refine the clustering
produced in Phase 1 in order to achieve the minimum loss of modularity.
In this phase, the algorithm had some limited access to Gk, like the
neighbourhood of nodes of the incoming graph.

61

16.3.2 Refinement approaches

Ten different merging approaches were tested; the base merging algorithm
from Phase 1 and nine refinement algorithms for Phase 2 were developed.
It is important to mention that the algorithm for Phase 1 is a stand-alone
algorithm, which produces a clustering. However, due to its knowledge
of the graph G being strictly restricted to the incoming partitions Pk, the
results were sub-optimal. It was, however, deemed to be a good starting
place for the refinement phase and was therefore used as a base case. A
refinement algorithm that would degrade the modularity score of the base
algorithm was considered to be non-functional, as it would only add to the
runtime without any positive effect on the clustering performance.

Figure 16.1: The graph used as an example of refinement-phase strategies

The following algorithms were tested for Phase 2. Figure 16.1 is used to
describe how the refining algorithms work. Each algorithm is superseded
by an example. In all examples Pk consists of nodes 1 - 7, which are named
by their processing order and coloured by their cluster. Nodes 2 - 5 are
neighbours of node 1.

0. No algorithm

The result from Phase 1 is used directly, with no additional merging
strategy was used. Phase 2 is skipped.

1. Node-wise merge

For each node-pair (u, v) connected by an edge in Pk, the one with the lower
degree joins the the one with the higher degree. This approach tries to

62

combines the clusters of nodes with low degree with the ones with high
degree.

Algorithm 16.2 1. Node-wise merge

for node in Pk do
neighbours← get_neighbours(node)
for neighbour in neighbours do

if node_degree[node] > node_degree[neighbour] then
node_community[neighbour]← node_community[node]

else
node_community[node]← node_community[neighbour]

end if
end for

end for

Example: nodes 2, 3, 4 and 5 would change to blue cluster. Following
this nodes 6 and 7 would change their cluster to blue, as node 4 has been
changed.

2. Node-wise merge with factor

For each node-pair (u, v) in Pk if degree of u is at least two times higher
than the degree of v, then v joins the community of u. In order to restrict
the merging of the communities that should not have been merged, a factor
of two is introduced. A node will only change communities if at least one of
its neighbours is at least two times more "important" than itself. The factor
may be changed, but the factor of 2 resulted in overall best performance in
initial tests.

Algorithm 16.3 2. Node-wise merge with factor

for node in Pk do
neighbours← get_neighbours(node)
for neighbour in neighbours do

if node_degree[node] > 2 ∗ node_degree[neighbour] then
node_community[neighbour]← node_community[node]

end if
end for

end for

Example: nodes 2, 3 and 5 would change to blue community as node 1
has at least 2 times as high degree as these nodes. Node 4, 6 and 7 would
not change their communities, as node 1 has only 4/3 the degree count.

3. Ballot with one vote per node

Every neighbour v of node u in Pk votes on which community the
neighbourhood should be in, and votes for its own community. The

63

neighbourhood changes to the community with most votes. In case of ties,
community is chosen at random.

Algorithm 16.4 3. Ballot with one vote per node

for node in Pk do
neighbours← get_neighbours(node)
ballot← dict{}
for neighbour in neighbours do

ballot[node_community[neighbour]]← +1
end for
chosen_community← max(ballot)
node_community[node]← chosen_community
for neighbour in neighbours do

node_community[neighbour]← chosen_community
end for

end for

Example: the community of nodes 1, 2, 3, and 5 would be chosen at
random, as each community received one vote. Node 4, 6, and 7 would
stay in the yellow community.

4. Ballot with one vote per degree

Same as Algorithm 3, but every neighbour v gets votes proportional to its
degree. The group changes to the community with most votes. In case of
ties, random community is chosen.

Algorithm 16.5 4. Ballot with one vote per degree

for node in Pk do
neighbours← get_neighbours(node)
ballot← dict{}
for neighbour in neighbours do

ballot[node_community[neighbour]]← +node_degree[neighbour]
end for
chosen_community← max(ballot)
node_community[node]← chosen_community
for neighbour in neighbours do

node_community[neighbour]← chosen_community
end for

end for

Example: nodes 2, 3, 4, 5, 6, and 7 would change their community to
blue, as node 1 has four votes, due to its degree.

5. Neighbourhood-to-community link counting

For each neighbour v of a node u, count the number of times each
community represented. Move u to the community represented the most.

64

In case of ties, the community is chosen at random. This idea is similar to
Algorithm 3, but in this case only one node changes communities instead
of the whole neighbourhood.

Algorithm 16.6 5. Neighbourhood-to-community link counting

for node in Pk do
neighbours← get_neighbours(node)
neighbour_links← dict{}
for neighbour in neighbours do

neighbour_links← +1
end for
best_community← max(neighbour_links)
node_community[node]← best_community

end for

Example: node 1 would change the community to either red, green,
yellow or pink. Node 2 would change its community based on what was
chosen by node 2. The same is the case for node 3 and 5. Nodes 4, 6, and 7
would stay in yellow community.

6. Edge-wise merge by degree

For every edge in Pk, the node with the lower degree joins the node with
the higher. This approach is inspired by the SCoDA algorithm, where the
edge decides whether one node should join the community of another.

Algorithm 16.7 6. Edge-wise merge by degree

for edge in Pk.edgelist do
u, v← edge
if node_degree[u] < node_degree[v] then

node_community[u]← node_community[v]
end if
if node_degree[v] < node_degree[u] then

node_community[v]← node_community[u]
end if

end for

Example: nodes 2, 3, 4, and 5 would join the blue community, as node
1 has the highest degree. Nodes 6 and 7 would also change to the blue
community, as node 4 would be blue by the time their edges are processed.

7. Community-wise merge by degree

For every community discovered in Pi, the one with the lowest sum
of degrees joins the one with the highest. This algorithm explores the
relationship between intra- and interlinks and is also the most technical

65

and resource heavy. A threshold variable may be set in order to stop
communities from merging too aggressively.

Algorithm 16.8 7. Community-wise merge by degree

inter_links← get_interlinks(Pk.edgelist)
intra_links← get_intralinks(Pk.communities)
for community_link in interlinks do

if intra_to_inter_link_ratio > threshold then
if community_links.c1 < community_links.c2 then

node_community[c1.nodes]← c2
end if
if community_links.c2 < community_links.c1 then

node_community[c2.nodes]← c1
end if

end if
end for

Example: nodes 4 - 6 are considered a cluster with the intra-cluster
edge count of 2. Node 1 would therefore join the yellow community, as
the sum of the blue intra-cluster edges is 0. Nodes 2, 3 and 5 would also
shift to yellow community as the result of the first shift, with the yellow
community continuously gaining more intra-cluster edges.

8. Leaf aggregation

For every edge between a node-pair (u, v), in Pk, if v has a degree of 1, it
joins the community of u. This algorithm works on the assumption that the
clustering of Phase 1 is adequate and only tries to "clean up" the leaf nodes.

Algorithm 16.9 8. Leaf aggregation

for edge in Pk.edgelist do
u, v← edge
if node_degree[v] < 1 then

node_community[v]← node_community[u]
else if node_degree[u] < 1 then

node_community[u]← node_community[v]
end if

end for

Example: nodes 2, 3 and 5 are leaf nodes, and would join the blue
community. Nodes 6 and 7 are already in yellow community and would
stay there.

9. Eigenvector centrality

For every edge between a node-pair (u, v) in Pk, the node with the lower
eigenvector centrality joins the one with the higher. The eigenvector

66

centrality is the measure of influende of a node on a network. It may
therefore be a good way to ensure that the communities are based around
the most "important" nodes.

Algorithm 16.10 9. Eigenvector centrality

ec← get_eigenvector_centrality(Pk)
for edge in Pi.edgelist do

u, v← edge
if ec[v] < ec[u] then

node_community[v]← node_community[u]
else if ec[u] < ec[v] then

node_community[u]← node_community[v]
end if

end for

Example: the eigenvector centrality of nodes in the graph would be:
node 1: 1.0, node 2: 0.459, node 3: 0.459, node 5: 0.459, node 4: 0.796, node
6: 0.366, node 7: 0.366. Following this, nodes 2, 3, 4, and 5 would join the
blue community. Nodes 6 and 7 would change to the blue community due
to node 4 changing previously.

16.3.3 Testing 2-split of graphs

The different merging strategies were run on three different graphs a
number of times and the results were recorded. The three graphs chosen
were Zachary’s Karate Club graph, The stochastic block model (SBM)
graph, and SNAP Twitter graph. These graphs were chosen due to the
variation of size and difficulty of clustering. Tables 16.1, 16.2 and 16.3
present these findings.

Note: When talking about the different algorithms, their corresponding
numbers will be used, e.g. if the data about the Base algorithm was
described, the algorithm would be presented as number 0. This is done to
clearly differentiate between the different algorithms, due to some of them
having names similar to each other.

The algorithms 5, 8 and 0 had the highest modularity preservation
and the lowest running times. The algorithm 0, which does not use any
additional merging techniques and was intended to be used as the base
case for comparison, had the best "modularity preservation per second",
i.e. the highest modularity divided by running time, of all algorithms. It is
interesting to see that algorithm 8 (leaf aggregation) has the same score as
algorithm 0, meaning that it does not seem to have any effect, which may
indicate that there are few to no leaves with differing communities to the
ones they are attached to. This may be due to the guarantees that Leiden
gives about goodness of clusters [40].

Another interesting result, presented in Table 16.3, is the fact that all
three algorithms actually performed better than the base Leiden in the

67

case of the SNAP Twitter graph. While the difference is negligible and
may be attributed to advantageous shuffling, the fact that this happened
consistently, with up to 10 re-runs per algorithm, is interesting. Further
testing is required to discover whether more gain can be achieved.

The framework used for these tests is flexible and the clustering
algorithms in both initial clustering and the clustering of the incoming
graph may be switched out. It may be interesting to see whether two
different algorithms may be combined in order to achieve even better
scores. Another interesting test would be to see whether splitting the
incoming graph into several smaller chunks would influence the merging
process. These tests will be presented in the next chapters of this thesis.

Merging strategy Modularity Communities Runtime (10−3 s)

Default Leiden 0.42 4 0.4197

5 0.38 4.17 0.9255
0 0.36 4.38 0.5194
8 0.36 4.35 0.7835
7 0.32 3.52 0.5856
2 0.28 4.2 0.8836
1 0.27 2.27 0.8285
6 0.26 3.96 0.6444
9 0.19 4.05 1.1990
3 0.05 1.86 0.9418
4 0.03 1.68 0.7801

Table 16.1: Merging strategies on the Zachary’s Karate Club-graph

Merging strategy Modularity Communities Runtime (10−3s)

Default Leiden 0.79 7 9.91

0 0.79 8.43 12.60
8 0.79 8.59 12.95
5 0.79 8.0 19.39
2 0.78 7.34 19.03
6 0.75 7.71 13.98
1 0.7 7.01 18.61
9 0.63 8.2 21.87
3 0.61 7.14 21.80
7 0.56 6.24 18.55
4 0.54 6.97 22.36

Table 16.2: Merging strategies on the SBM-graph

68

Merging strategy Modularity Communities Runtime (s)

Default Leiden 0.81 79 1.76

0 0.82 106.5 9.906
8 0.82 106.1 10.04
5 0.82 105.5 14.86
7 0.66 85.2 835.5
2 0.34 56.8 14.47
3 0.23 32.5 123.1
6 0.2 88.0 11.25
1 0.052 20.7 15.45
9 0.025 91.0 13.38
4 0.012 15.3 103.0

Table 16.3: Merging strategies on the SNAP Twitter-graph

16.4 Testing k-split of graphs

16.4.1 Approaches for base merging algorithm

In order to test how the merging algorithms work when G is split into
several partitions, the testing framework was extended to split a given edge
list into k-parts with roughly the same number of edges. The merging
algorithm would then run on G and merge each partition Pk one by
one. The modularity of the detected communities of the resulting Gk was
recorded. The preliminary tests showed that the modularity score quickly
dropped after the initial 2-split, described in previous section. The baseline
merging algorithm, or Base algorithm, presented in Section 16.3.1, is the
integral part of the merging process, as it serves as both the baseline for
testing other algorithms and also as a base for the other algorithms to build
upon. In order for the other algorithms to work, this phase must produce
the best clusters possible. Several tests were run in order to establish the
best possible way to conduct this. The different approaches were given
names, presented below in bold, used in further testing and presentation of
results. In order to understand the subtle differences between approaches,
we introduce the notion of Cluster IDs, which are used in by Phase 1 to
keep track of which nodes are in which communities. When no clusters
have been discovered, the Cluster ID is 1. As new clusters are discovered
the starting Cluster ID is updated, so in the following merge of Pk+1, the
Cluster ID will start the the number of clusters of Pk + 1. The following
approaches were tested:

Overwrite Intermediate cluster IDs of Pk, used for keeping track of
clusters of Gk, always start at 1, possibly overlapping with clusters of Gk−1.
Every node of Pk is placed in the communities found by clustering Pk,
whether they have already been clustered or not. This results in nodes
being moved between communities more often, as Pk+1 will often change

69

the communities from previous merges.

Add Cluster IDs of Pk always start at 1, possibly overlapping with clusters
of Gk−1. Nodes that have already been clustered in Gk−1 are not moved.
A node from Pk is added to clustering of Gk only if it has not been seen
previously. This will often results in less movement in Phase 1.

Update Cluster IDs of Pk start from the number of already discovered
clusters. Nodes that are already present in the clustering of Gk−1 are moved
to their new clusters obtained through clustering of Pk. This approach may
result in splitting of stable clusters if nodes in Pk are revisited often.

Append Clusters IDs of Pk start from the number of already discovered
clusters. Nodes that are already present in the clustering of Gk−1 remain in
their clusters. Nodes from Pk that have not been seen before are added to
new clusters. This approach may create many small clusters, as after some
time, only a small subset of nodes in Pk will not have been seen previously.

Mix Described in Algorithm 16.1. If Pk is larger than the Gk−1, nodes
that are already present are moved to their new clusters, discovered by
clustering Pk. Otherwise, only nodes not present in Gk−1 are added to new
clusters.

Figure 16.2: Performance of base merging algorithm variations on k = 100-split
of the SBM-graph

Figure 16.2 depicts the modularity scores after merging a k-split,
where the x-axis shows the k-th split and y-axis show the resulting final
modularity. The SMB-graph, also used in Chapters 13, 14 and 15, was
used for testing the different variations of the base merging algorithm with
k = 100. It appears that there is little difference between the methods, with
the mix method performing just slightly better than the others. It is also the

70

most versatile method, as it takes into account the sizes of Pk and Gk−1. It
was therefore chosen as the primary merging algorithm.

16.4.2 Conducting k-split test

Figure 16.3: Modularity of different merging algorithms of the SMB-graph as the
value of k gets bigger

Merging strategy Modularity Communities Runtime (s)

Default Leiden 0.79 7 -

5 0.53 82.25 0.1127
3 0.47 16.56 0.2274
4 0.43 5.93 0.2164
1 0.4 28.2 0.2022
6 0.3 107.58 0.1662
2 0.23 265.15 0.2025
8 0.22 280.79 0.1668
9 0.16 332.61 0.2076
7 0.12 17.81 0.209
0 0.11 682.02 0.1721

Table 16.4: Merging strategies on k-split of SBM-graph (k = 100)

After choosing the approach for the Base algorithm (0), the next step was to
test other algorithms with k > 2. For a preliminary test, the SBM-graph
with k = 100 was chosen, meaning that the merge algorithm was run
100 times with k getting increasingly larger, while recording the runtime
and results of each approach at each value of k. Figure 16.3 presents
the average performance of the different algorithms as the value of k

71

increases. For each run, the edge list was split into k parts and the chosen
merging algorithm was run iteratively, until k was reached. The modularity
was then calculated and the running time, number of communities and
modularity was recorded. The average of each of these entries was then
calculated and the results were recorded. Table 16.4 presents the final result
for the k = 100 on the SMB-graph.

In order to test the running time and performance on a larger real-world
network, the k-split merge was run on the SNAP Twitter-graph with k-split
of up to k = 100. Figure 16.4 and Table 16.5 present the results of these tests.

Figure 16.4: Modularity variations of k = 100 on Twitter graph

Merging strategy Modularity Communities Runtime (s)

Default Leiden 0.82 79 -

5 0.57 120.59 64.01
8 0.42 18498.83 20.29
7 0.42 18400.19 34.12
0 0.42 18500.65 19.2
3 0.28 17.44 72.08
2 0.26 166.02 164.2
4 0.14 9.16 92.43
6 0.13 342.97 20.3
1 0.061 13.56 160.6
9 0.025 2083.97 28.94

Table 16.5: Merging strategies on k-split of Twitter-graph (k = 100)

16.4.3 Preliminary evaluation

Figures 16.3 and 16.4 show that the algorithms that worked best for 2-way
split do not work as well as the graph split gets larger. The no-algorithm

72

(algorithm 0) approach no longer works, and after a couple of initial splits
stabilises at around 0.07 modularity. The more aggressive approaches
appear to be inconsistent with modularity dropping and rising at different
rates depending on the value of k. While most of the algorithms follow the
same pattern with some variation, the unpredictability of community-wise
merge (algorithm 7) may be interesting to look further into. While it has
the lowest lows, it also produces the highest highs. It does not dip below 0,
however, as that would mean it places every node into its own community.
A potential problem may be that it is too aggressive in its merging. It would
be interesting to see how it performs with a higher threshold for merging.
Additionally, we believed that there is room for improvement for the best
algorithms, i.e. 1, 3, 4 and 5. Attempts at improving the merging strategies
were made and will be presented during the following stages.

16.5 Improving the merging algorithms

Figure 16.5: Modularity variations of k=500 with improved merging algorithms
on the SBM-graph

In order to improve the community-wise merge (algorithm 7), its main
weaknesses were identified. It appears that it was too aggressive in its
merging strategy. This fact was supported by the visual representation of
the final merge, showing that most nodes in the network were placed in
the same community. This confirmed the assumption and the algorithm
was modified by introducing a new threshold based on intra-links to inter-
links ratio, i.e. the relationship between the edges inside of the cluster
and edges between the different clusters. It was discovered that this ratio
was high when a community had few intra-links and many inter-links.

73

In those cases, the concerned communities should be merged and the
implementation was changed to accommodate this.

By restricting algorithms 3 and 4 from changing communities in cases
of ties, the merging of the SBM-graph seemed to get better. The average
modularity loss was about 3 % compared to the non-merging baseline.
This finding was deemed to be a promising result. Furthermore, by
making small adjustments to algorithm 5, i.e. removing a block for when
a node should update its community, the modularity score also seemed to
improve.

In order to check the new performance and potential variations of
the improved community merge, the algorithm was run with k = 500,
slicing the SMB-graph in up to 500 partitions, meaning that at k = 500,
each split consisted of about 8 edges. In order to save time running tests
and remove the noise produced by saving results of every k-split, a new
variable, k-step was implemented in the testing framework. This variable
allowed the framework to run the merging algorithm at specific intervals,
in stead of running it at each k, e.g. with k_step = 50 and k = 100 the
merging algorithm would be run three times - at k = 1, k = 50, and k = 100.

Figure 16.5 shows the performance of the updated merging algorithms.
The previous results of these algorithms were also included. While still
suffering from some variations, community-wise merge algorithm (7) no
longer dropped to zero once k grew beyond 50. It is also worth mentioning
that the other algorithms stabilised at around k = 150, with only few
occasional variations. This was also the case for the updated ballot-
based algorithms (3 and 4). Both seemed to stabilise at about 0.78 as the
number of edges in each chunk got smaller. The algorithm 5, presented
without the update was shown here for comparison as previously the
best best performer to visualise the improvements made by introducing
small changes to the algorithms in the refinement phase and its effect.
Additionally, algorithm 0 was included to depict the base case.

16.6 Performance of improved merging algorithms

In order to test the newly improved algorithms, the tests were run again,
on both the SBM and the Twitter graphs. Both were run with k = 500, and
the size of the initial paritition clustered by the Leiden algorithm, G0, was
lowered from 30 % to 20 %. This was done in order to make the merging
more challenging for the algorithms. The modularity score was recorded
every 25 k, resulting, as previously mentioned, in graphs with less noise,
making them easier to read. Figures 16.6 and 16.7 show the modularity
scores of all merging algorithms for the SBM and Twitter graphs at each
k-split.

The best performing algorithms on the SBM graph were 3, 4 and 5.
On the Twitter graph, however only two algorithms (5 and 7) had better
scores than the base algorithm (0). The Neighbourhood-to-community
link counting (algorithm 5) seemed to work well with the real-world
social media graph and the changes made to it seemed to alleviate the

74

problem it had with continuously decreasing modularity score, as it
seemed to stabilise at the score of around 0.75 modularity. Additionally,
it is interesting to mention that the Eigenvector Centrality algorithm (9)
seemed to perform better as the value of k grew.

Figure 16.6: Modularity variations of k=500 with improved merging algorithms
on the SBM-graph

Figure 16.7: Modularity variations of k=500 with improved merging algorithms
on the Twitter-graph

75

16.7 Python-igraph and k-split merging

While running the merging algorithm, we noticed that running time of the
base algorithm seemed to increase as k grew larger. While testing, we found
that when Python-igraph adds new edges, it re-indexes all edges of the
graph. The effect of this is that the first merge in a k=200 k-split took 0.1
seconds, while the last one took 2.1 seconds. This happened due to the
fact that Python-igraph reprocesses edges that have already been processed
before. This directly contradicts the requirement of the running time being
proportional to Pk.

In order to circumvent this, changes had to be made in how the the
rebuilding of graphs worked. By saving additional information about
the neighbours of each node, and not relying on the Python-igraph
implementation, the running time was cut down to a constant factor,
proportional to the number of edges of Pk, i.e. as long as the number
of edges in Pk was constant, the runtime of merging the graph would
be constant as well. By storing the information about nodes in Python
sets, the running time was decreased even further. Unfortunately, the
lookup time for sets is O(n), meaning that the algorithms relying on the
information about a node’s neighbours for the refinement phase, have
a running time of O(nm) where n are the incoming nodes and m are
these nodes’ neighbours. However, for the purpose of this thesis, this
was deemed to be acceptable and in accordance with the requirements,
as preliminary tests (not presented in this thesis) showed that the average
running time was not increased by much.

16.8 Conclusion

The tests in this iteration were mainly focused on three graphs,
i.e. Zachary’s Karate Club, the SBM-graph and the SNAP Twitter graph,
with the two latter ones being the main focus when transitioning from 2-
split to k-split. A testing framework was developed for this purpose and
was initially run on the 2-way split, but was later extended to be used for
the k-way split, where the user could input the desired graph, in addition
to some information about the desired testing patterns.

Additionally, several approaches were introduced and tested. The
discovery that different variations of the Base algorithm (0) have no real
effect was surprising and interesting in equal measures and should be
tested further for possible ways to improve it. This, however, is deemed
to be out of scope for this thesis, as the Base algorithm provides an adequate
starting point, and the most important part of the algorithm transpires in
the Refinement phase. While several methods presented in this iterations
produced good results in 2-split phase, the rapid decline in modularity was
somewhat disheartening to see as the value of k increased. The algorithm
that appeared to have the best results overall was the Neighbourhood
community links (algorithm 5), performing above average for the SBM-
graph, and being the best for the real-life Twitter-graph, with almost no loss

76

in modularity. Further testing is needed to make sure that this approach
can be used on different graphs and the next iterations will focus on this.

Another interesting finding was the huge variation in performance of
the algorithms based on the type of graph being processed. It appears
that the graph properties impact the merging and it may be interesting
to see which properties have the most influence on the way the merging
algorithms perform. Further tests on this will be presented during the
evaluation of the merging strategy.

77

78

Chapter 17

The NCLiC Algorithm

17.1 Introduction

The merging algorithm number 5, Neighbourhood-to-Community Link
Counting, hereby NCLiC, was the best overall performing merging
strategy out of those tested in Chapter 16. NCLiC is based on the notion
that if most of a node’s neighbourhood belongs to one community, there
is a high probability of that the node itself should be a part of the same
community. The algorithm also relies on the guarantees provided by the
Leiden algorithm that runs underneath it i.e. that the communities that
Leiden provides are optimal, or at least close to optimal. Due to the
incremental nature of the graph, and based on the order and composition
of the chunks, it is possible that the algorithm provides optimal clusters
of the graph. This can occur when the optimal local partitions are also
globally optimal, which is the case when the input chunks are the clusters
Leiden would produce. This, however, happens rarely and is a best-case
scenario. In the other cases, the merging algorithm should perform the
merge of the two parts in such a way that the modularity loss is as small as
possible, compared to the modularity that would be achieved by clustering
the graph as a whole by an off-line algorithm.

Algorithm 17.1 NCLiC refinement phase

for node of Pk do
neighbours← get_neighbours[node]
neighbour_votes← {}
for neighbour of neighbours do

neighbour_votes[community_o f _neighbour]← +1
end for
new_community← max(neighbour_votes)
node_community[node]← new_community

end for

The pseudo-code for the algorithm is presented in Algorithm 17.1.
After the initial clustering and merging of Pk and Gk−1, transpiring in Phase
1, the neighbours of each node, VPk, "vote" on which community that node

79

should be in. The community that receives most votes, new_community, is
chosen and the node switches its community to the chosen one. In case
of ties, a random community is chosen out of the ones that are tied. The
algorithm relies on the Leiden producing good clusters and the notion that
nodes which are similar will often belong to the same community and thus
often be neighbours. The fact that the voting is done for each node in Pk will
likely fix eventual suboptimal choices that the initial clustering algorithm
may make.

17.2 Steps of NCLiC

Figure 17.1: NCLiC Algorithm Steps

Figure 17.1 shows an example of how the NCLiC algorithm works. The
two gray boxes in each step represent the incoming chunk, Pk, (left) and
the graph stored in the memory, Gk−1 (right).

Step 1: Build graph Pk is read and the graph of the chunk (GPk) is built.
Nodes 5 and 6 have been processed previously, during processing of some
partition, Pk−y and exist in Gk−1, and are already placed in clusters, red and
blue respectively.

Step 2: Pre-cluster Pk is processed by a chosen algorithm (Leiden) and
vertices that are in Pk but not in Gk−1 are added to their discovered
communities. In this case nodes 5 and 6 are do not change communities
as they have been clustered during a previous merge. The arrows show
the progression of the algorithm from one state to another, showing major
events. Following is the explanation of each step:

Step 3.1: Refine nodes 1-4 The nodes are iteratively processed and node
is moved to the cluster that the most neighbours are a part of. In this case,
nodes 1-4 are not moved and retain their cluster. The reason for splitting

80

up the refinement step in two is to show how the clusters that have been
stabilised will stay stable until the graph topology changes in a way that
forces a period of instability.

Step 3.2: Refine nodes 5-8 In this step several nodes (5 - 8) are processed:

• Node 5: node number 5 would be moved to the red cluster, due to
the number of neighbours in the red cluster (3 neighbours in the red
cluster), but is already in the red cluster and stays there.

• Node 6: there is a tie between yellow and blue (node 8 in the yellow
cluster and one node, from the memory, in the blue one). Node 6 can
be moved to either, chosen randomly.

• Node 7: there is a three-way tie between green, yellow and red
clusters (1 node in each). The movement is chosen randomly.

• Node 8: there are several possibilities for the movement of this nodes
based on how the nodes were moved prior to this:

– Red from nodes 5, 7 or both.

– Yellow from nodes 6, 7 or both.

– Green from node 7

– Blue from node 6

The example above shows both strengths and weaknesses of the
algorithm. As seen, the more neighbours a node has from the same cluster,
the higher the probability of that node being stable, i.e. not changing this
cluster. Due to the randomness of the order in which nodes are processed
the results may vary. Depending on chance, the entire yellow cluster in
the example may be decomposed into separate clusters, which is locally
sub-optimal. However, same nodes are often processed several times as
new chunks Pk of a graph G are received, potentially resulting in more
optimal clustering and often converging towards a stable state, that may
be close to an optimal global solution. The example of how nodes can be
updated is seen with nodes 5 and 6. An important part of the algorithm
is that this can be achieved without the algorithm ever having access to
the whole graph, G. Once the clusters have been stabilised, they should
remain stable, unless some major disruptions in the network happen, like a
new node becoming extremely popular etc. This would initiate a new state
of "imbalance", where nodes will shift for a while, and then stabilise again
at some point.

17.3 NCLiC Example

In order to describe NCLiC even further, consider the following example.
The network presented is a constructed graph of 18 nodes and 34 edges.
NCLiC is run on k = 4 partitions, with the initial partition size of 20 %. The
example will walk through the events as new chunks are received.

81

17.3.1 Whole graph

Figure 17.2: The graph to be clustered by NCLiC

The graph used in the following example is has a clear community
structure, with three clusters. Figure 17.2 shows G before splitting, merging
or clustering. The following steps will describe the steps of the NCLiC
algorithm as Pk arrive and get merged with Gk−1.

17.3.2 Initial partition

P1 consists of following nodes: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].
As the P1 is received, and there is no graph in the memory, i.e. G0 = ∅, the
first step is to cluster P1 using the Leiden algorithm. The image shows the
result of this clustering. The 13 nodes have been placed in five clusters. No
merging algorithm is run during the initial clustering of P1 as, at best, this
would produce the same or worse results than what is already obtained by

82

running the Leiden algorithm. The information about the clustering and
neighbours of each node is stored in memory.

17.3.3 2nd partition

P2 consists of following nodes: [6, 4, 8, 10, 5, 3, 13, 9, 1, 11, 12].
As the P2 is received, it is read and the data about each node’s neighbours is
stored in memory. Then, phase one of NCLiC starts by running the Leiden
algorithm on the chunk. Clustering information is updated or added as
needed. In this case, the number of nodes in P2 is less than in G1, so only
the new nodes, that are not already in the graph are added to the clustering
dictionary. The algorithm then progresses to the next phase, where the
new nodes’ communities are updated. The following nodes change their
community from what is stored in the memory:

• Node 4: from pink to green cluster.

• Node 8: from orange to red cluster.

• Node 13: from orange to red cluster.

• Node 11: from teal to red cluster.

• Node 12: from teal to red cluster

Since node 7 was not in P2, is is not processed, and stays in its original
cluster. The reason for it changing colour is that before terminating, in
order to save memory, and due to how Python-igraph works with graphs,
the algorithm moves node 7 to the lowest number available cluster ID, here
number 3, which is marked with orange colour.

83

17.3.4 3rd partition

P3 consists of following nodes: [9, 8, 13, 11, 2, 3, 7, 6, 4, 10, 1, 12].
During the Pre-clustering phase, P3 gets clustered by Leiden. After the

initial clustering, the following nodes are moved between clusters:

• Node 7: from orange to green cluster.

Since no new nodes were added and P3 was smaller than G2, the Leiden
algorithm did not make any changes to the intermediate clustering. In
phase 2, however, the additional edges that were added resulted in node
7 changing communities, leading to the optimal clustering of G3, with two
clearly defined communities.

17.3.5 Final partition

P4 consists of following nodes: [14, 15, 16, 17, 18, 4, 9].
P4 consists almost exclusively of new nodes, meaning that the nodes 14,

16, 17, and 18 were placed in the new (orange) community. Node 15 was

84

placed in the pink community, together with 4 and 9 by the Leiden pre-
clustering. Nodes 4 and 9, however did not change communities, leaving
15 alone in its community. Intuitively, this is sub-optimal. During the
refinement phase, however, the following nodes changed communities:

• Node 15: from pink to orange cluster.

The fact that the refinement phase was able to correct Leiden’s
clustering, points to how the algorithm is able to build upon the results
of the underlying clustering algorithm, but also improve its sub-optimal
decisions. While the algorithm has a very limited access to the graph, it
appears to produce good results based on decisions taken semi-locally.

17.3.6 Summary

The example shows how the NCLiC algorithm works globally, while only
looking at local problems. The fact that each additional chunk seems to
improve the clustering indicates that the solution is sound. Taking into
account that, in theory, the information in incremental graphs is boundless,
this method should suit this type of problem. Furthermore, the example
shows how globally sub-optimal initial clustering can be fixed as new
information about the network comes in. Additionally, if a whole cluster
gets added as a separate chunk, as done in the example, the cluster will
likely be preserved. This shows that using NCLiC, new clusters can appear
or be merged with the existing ones, but can also be added on their own
when the circumstances are right. For long-term observations of networks,
this offers a high degree of flexibility, as shifts in the topology of the
network, like nodes gaining or loosing popularity, will be reflected by the
clustering.

85

86

Chapter 18

Evaluation

18.1 Runtime vs Goodness of Clusters

When comparing different algorithms to each other, one has to take
into account the time it takes to run the algorithm versus the produced
result. Due to the modularity optimization problems being NP-hard, the
algorithms that produce good results often take long time to run, while the
algorithms that are fast often perform poorly. When it comes to incremental
graphs, we do not have a good way of comparing runtime versus the ability
to find good clusters. A possible way of comparing algorithms is to try and
place them in the same scenario, i.e. run a clustering algorithm like Leiden
each time a new chunk is added. In order to do this, the testing framework
was extended to facilitate running Leiden on incremental graphs. When a
new graph input is received, the graph in memory gets updated and the
Leiden algorithm is re-run on the whole graph. This leads to the Leiden
algorithm being run on an increasingly larger network, thus increasing the
runtime. In order to make the comparison as fair as possible, the rebuilding
of the graph was done in the exact same way as in NCLiC. Additionally, the
timing of the algorithm allowed for recording the total time algorithm uses,
in addition to only algorithm’s clustering time.

For comparison, when NCLiC is run on the SNAP Twitter graph with
k = 20 and initial partition size of 20 %, it takes 12.7 seconds to run with
the resulting modularity score of 0.76. If Leiden is rerun on each new input
chunk on the same hardware, it takes 2 minutes and 47 seconds with the
resulting modularity of 0.81. The question then becomes; is the additional
goodness of results worth the longer wait? If we compare the two results,
we see that the merging algorithm produces 94 % of Leiden’s modularity
in just 7 % of the running time. The answer to the question lies within our
goal - if we are concerned about finding the best possible clusters and do
not care about the time it takes, then the reclustering may be a possibility.
Otherwise, concessions must be made in terms of the goodness of clusters.

87

18.1.1 Leiden runtime

In order to expand on this example, we tested the runtime of the two
algorithms, NCLiC and Incremental Leiden, and looked at the number
of operations and the time each uses when merging graphs. The results
of both were compared to each other. Since the asymptotic runtime
is of Leiden is not stated in the paper [40] and the Python-igraph [72]
implementation code is obfuscated, we had to estimate the number of
operations it does. For the purpose of this test, we assumed the asymptotic
runtime of Leiden to be O(n log d), where d is the average degree, as stated
in [44]. While this may or may not be entirely correct, it gave a basis
for comparison between NCLiC and Leiden. In order to calculate the
number of operations for Leiden, we inserted an operation counter into
the Incremental Leiden algorithm which presented the assumed number of
operations the Leiden algorithm would use if it had to recluster the graph
each time a new graph partition Pk would be added. This was calculated
by summing up the result of n log d for each partition marge.

18.1.2 NCLiC runtime

The runtime of NCLiC for each partition k is dependent on two factors - the
runtime of the clustering algorithm in the Pre-cluster phase, and the runtime
of the merging algorithm during the Refinement phase. Following this, the
runtime of NCLiC is:

O(Lk + nkd) (18.1)

Where L is the runtime of Leiden on partition Pk, nk is the number of
nodes in Pi and d is the number of neighbors of n, which correlates to the
average degree d. In order to calculate the number of operations of NCLiC,
a counter was added in each of the phases. The Pre-cluster counter was
calculated through the use of Leiden’s assumed asymptotic time, n log k,
while another counter was inserted in the innermost loop of the merging
algorithm. The sum of these elements provided the number of operations
of the algorithm for a specific k.

18.1.3 Leiden vs NCLiC

Two types of tests were run in order to establish the running times of the
NCLiC and Leiden. The first one, based on the aforementioned calculations
was run to determine the growth of the number of operations as the value
of k increases. The second one was a timed test - for each algorithm the
total amount of time to cluster the required number of k was recorded,
in addition to its clustering time only. The timed tests were run on a
personal computer, with the same specifications as previously mentioned.
The SNAP Twitter graph was used with all tests, with 20 % of G set to be
the size of the initial graph, P0. Each test was rerun up to 13 times with
increasingly larger k and the results were recorded. Due to long running

88

times, the Leiden approach was only run for up to k = 1024 in regards to
time, and k = 4096 in regards to operations.

(a) Operations (b) Log2 Operations

Figure 18.1: Performance of NCLiC vs Leiden in number of operations

(a) Seconds (b) Log2 Seconds

Figure 18.2: Performance of NCLiC vs Leiden in seconds

Figure 18.1 shows the number of operations done by NCLiC and
Leiden algorithms, presented in normal (log-num) and logarithmic (log-
log) scale. Figure 18.2 shows the running time of the two algorithms in
seconds, also presented in normal and logarithmic scale. The runtimes
presented are the clustering times only it order to compare the algorithms
as fairly as possible. The purpose of this is to account for the deficiencies
of the graph reading and rebuilding. The rebuilding of the graph is a
separate problem, as is deemed out-of-scope for this thesis. It is, however,
important to mention that a well-implemented rebuilding of graphs would
make NCLiC even faster. As seen in the Figure 18.2, the time it takes
to rebuild the graph takes increasingly longer time the larger k becomes
for both algorithms. Due to this fact, it may be difficult to compare the
two algorithms by looking at their running times. It is, however, telling
that the Leiden reclustering approach was not run for values of k larger
than 1024, as the processing times became too large (over 45 minutes).
NCLiC accomplished this in just 26 seconds, including the rebuilding time,
and 15 seconds, excluding it. It is also worth mentioning that the Leiden
algorithm is implemented in C++, which is far superior to NCLiC’s Python
implementation, in regards to running times. Nonetheless, the processing
time of NCLiC is beyond comparison to the approach of continuous
reclustering.

89

In terms of operations, presented in Figure 18.1, the NCLiC and Leiden
algorithms start out equally, but the number of operations of NCLiC
increases rapidly for the first few k, as the Refinement phase is added.
However, the growth of the number of operations of NCLiC is less than that
of Leiden and already after k = 32 Leiden’s operation count grows beyond
that of NCLiC and continues to double for each time k doubles. NCLiC’s
operation increase is far slower, which also results in faster running times.
This is also evident in clustering times of the algorithms, where no overlap
can be found at all. Again, the increase of Leiden is exponential, while
NCLiC’s is much less steep.

18.2 Initial partition size

Figure 18.3: NCLiC performance based on initial partition size

Due to the fact that the NCLiC does not have access to the information
about the whole graph, the size of the initial partition, Pk is extremely
important. Figure 18.3 shows an example of how the modularity score
of NCLiC depends on the initial partition size of the graph, G. For the
purpose of testing, the framework was used with various sizes of the input
partition in percent of the total number of edges of the graph - at 0 %, the
algorithm starts with no G and the thus no clustering information to base
its preliminary decisions on. At 100 % the algorithm receives G to cluster
once, with no additional Pk to cluster. The result of this is effectively the
same as running Leiden once G.

The graph used for this test is the wing.mtx, from the DIMACS10-set.
It is a small (10 937 nodes and 150 976 edges), simple graph with Leiden
modularity score of over 0.9. The reason it was chosen for these tests was
that NCLiC had struggled with this graph in previous tests, and resulted in
one of the largest differences in modularity between Leiden and NCLiC (34
%), meaning that it is one of the graphs that was especially hard to cluster

90

for NCLiC.
The figure shows that the larger the initial partition is, the lower the

modularity drop becomes. The figure presents the modularity score as
percentage of the total maximum achievable modularity score, obtained
by running Leiden. As seen, there is a diminishing return of increasing the
initial partition above 50 %. There is also a small difference between the
initial partition of 10 % and 20 %. At 50 % of the initial partition size, the
modularity stabilises at around 85 % of the attainable score. It is however
interesting to note the modularity drop at lower k values, which happens
with almost all partition sizes. At k = 2, the highest drop in modularity
happens at 40 % of the initial graph size and lowest drop happens at 0 %
of the initial partition size, while at k = 4 and k = 8 with 10 % of the initial
partition size resulted in better modularity score than 20 % initial size.

This leads to the conclusion that a larger starting graph will result in
better performance of NCLiC. While there may be some variations in the
beginning, the clusters will stabilise after a while. If it is a possibility, one
should start with as much of the graph as possible. This is likely in a
streaming scenario, where some data about the graph may have already
been gathered and stored in memory. Another possibility is to recluster the
whole graph at some time intervals, as this would transform Gk into G0,
leading to higher modularity scores of future merges.

18.3 Merging and Graph Characteristics

In order to determine whether the characteristics of a graph can indicate
how the merging algorithm will perform, four different graphs were tested.
Their characteristics and the performance of NCLiC were recorded in order
to see whether some characteristics could impact the algorithm. Table 18.1
presents these differences. The graphs tested were the SBM, SNAP Twitter,
DIMACS10 598a and SNAP YouTube and were merged with k = 20 and
20 % initial partition size.

SBM Twitter 598a YouTube

Leiden Modularity 0.79 0.81 0.90 0.73
NCLiC Modularity 0.49 0.77 0.75 0.63
Modularity Retention 62 % 95 % 83 % 86 %

Nodes 1100 81 306 110971 1134890
Edges 4063 1 342 310 741934 2987624
Average degree 7.4 33.0 13.37 5.26
Density 0.0067 0.0004 0.00012 4.64e-06
Neighbour degree 8.3 191.9 13.77 654.11
Eigenvector centrality 0.0109 0.0005 0.00165 0.00017
Average clustering 0.05 0.57 0.43 0.08

Table 18.1: Characteristics of different graphs

Looking at the various characteristics of the graphs, there does not

91

seem to be any clear connection between them and NCLiC’s modularity
retention. The highest performance of NCLiC was achieved on the
SNAP Twitter graph, which also had the highest average degree and
average neighbour degree, i.e. the average degree of the neighbourhood of
node u [79]. This may have impacted the algorithm, as it had more chances
to "fix" the sub-optimal decisions in the pre-clustering phase. Additionally,
the graph topology has an impact on how clusters get merged. When
the original clusters are large and input chunks are small, Leiden may
incorrectly partition nodes that should have been placed in the same
cluster. From the local perspective, this partitioning may be true, but in
the global perspective, the results would be highly skewed. The fact that
there does not seem to be any way of knowing how NCLiC will perform
beforehand shows us that NCLiC suffers from the same problem all other
clustering algorithms seem to suffer from - namely that you have to choose
and adapt the clustering algorithms in accordance with the type of graphs
you are working with, as the performance of the algorithms depends on
the structure of the graphs.

18.4 NCLiC vs Current State-of-the-art Algorithms

18.4.1 Graph Description

The tests in the following sections were run on a set of six graphs, with
various sizes and characteristics. Several of the graphs are from the SNAP-
library, as they represent real-world social networks. Additionally, one
DIMACS10 graph was selected, as it presented a challenge for NCLiC. The
following graphs were used:

Stochastic Block Model The SBM graph, presented in Section 10.5,
Benchmark Networks.

SNAP Twitter The Twitter graph used, presented in Section 10.5, Bench-
mark Networks.

SNAP Email From the description of the Email network from SNAP
database: "The network was generated using email data from a large European
research institution. We have anonymized information about all incoming and
outgoing email between members of the research institution. There is an edge (u,
v) in the network if person u sent person v at least one email. The e-mails only
represent communication between institution members (the core), and the dataset
does not contain incoming messages from or outgoing messages to the rest of the
world" [80].

SNAP YouTube From the description of the YouTube network from
SNAP database: "Youtube is a video-sharing web site that includes a social
network. In the Youtube social network, users form friendship each other and users

92

can create groups which other users can join. We consider such user-defined groups
as ground-truth communities. This data is provided by Alan Mislove et al" [81].

SNAP Amazon From the descriptiono of the Amazon network from
SNAP database: "Network was collected by crawling Amazon website. It is based
on Customers Who Bought This Item Also Bought feature of the Amazon website.
If a product i is frequently co-purchased with product j, the graph contains an
undirected edge from i to j. Each product category provided by Amazon defines
each ground-truth community" [82].

DIMACS10 Wing The Wing network from the DIMACS database. The
network consists of 62 000 nodes and 121 500 edges, which is large enough
to provide a clustering challenge, but small enough to perform tests fast.

18.4.2 Testing

Due to the lack of other clustering algorithms for incremental graphs and
the choice of modularity as the main goodness measure of the clusters, this
thesis uses the modularity of Leiden algorithm as the reference. This is
done because the Leiden algorithm achieved the highest modularity during
the preliminary test. There are, however, many other frequently used
clustering algorithms. For this purpose, we tried to compare the NCLiC
algorithm with other state-of-the-art algorithms. To make this process
easier, we only tested algorithms implemented in Python-igraph. NCLiC
was run at k = 20 with the initial partition size of 20 %. Table 18.2 shows the
results. It is interesting to see how different algorithms perform in terms of
runtime, modularity and number of communities discovered. It is however
important to mention that the results can be somewhat misleading. The
best performing algorithms - Leiden and Louvain - are built for maximizing
modularity. It may therefore be unfair to compare the chosen clustering
algorithms against each other, as they are all built for different purposes.
The implementations of the different algorithms also vary, which heavily
impacts the runtime - SCoDA, for example was tested by using the Python
implementation, which is by default slower by several magnitudes than
its C++-implementation. The Louvain and Leiden algorithms benefited
from this the most, as also seen by their runtimes. For the purpose of
testing of the NCLiC algorithm, however, there are some interesting results.
NCLiC is better than SCoDA across the board, with the exception being
the SNAP email-network, where they performed equally. On the larger,
real-life graphs (Twitter, YouTube, Amazon), NCLiC even beats Infomap,
either by having higher modularity, or by being able to complete the
clustering within reasonable time1. It is, however, important to mention
that while the modularity score is a good way to test for goodness of
clustering, the clusters discovered may vary despite algorithms producing
similar modularity scores. Figures 18.4 and 18.5 depict an example of the

1Infomap was stopped after failing to complete clustering of the SNAP-YouTube graph
in more than three hours

93

differences in clustering when using Leiden versus NCLiC. Whether one
or the other is more correct is left up to for debate and is out of the scope of
this thesis.

(a) Leiden (b) NCLiC

Figure 18.4: Twitter clusters discovered by Leiden and NCLiC

(a) Leiden (b) NCLiC

Figure 18.5: Facebook clusters discovered by Leiden and NCLiC

94

Graph Algorithm Modularity Communities Time

SBM

NCLiC 0.45 82 0.02 s
Leiden 0.79 7 0.008 s
Louvain 0.79 7 0.009 s
Infomap 0.79 8 1.12 s
SCoDA 0.22 247 0.006 s

SNAP Twitter

NCLiC 0.75 634 11.21 s
Leiden 0.81 73 1.52 s
Louvain 0.79 79 2.02 s
Infomap 0.43 2914 4 m 21 s
SCoDA 0.05 41 441 7.01 s

SNAP Email

NCLiC 0.08 32 0.19 s
Leiden 0.43 27 0.006 s
Louvain 0.42 27 0.016 s
Infomap 0.41 42 0.30 s
SCoDA 0.07 492 0.02 s

SNAP YouTube

NCLiC 0.63 72 534 38.81 s
Leiden 0.72 7 272 16.39 s
Louvain 0.68 9 709 12.29 s
Infomap - - > 3 hours
SCoDA 0.14 724 495 14.42 s

SNAP Amazon

NCLiC 0.77 26 784 12.61 s
Leiden 0.93 393 3.39 s
Louvain 0.92 261 3.67 s
Infomap 0.82 17 285 24 m 34 s
SCoDA 0.36 104 875 3.42 s

DIMACS Wing

NCLiC 0.59 8 545 1.55 s
Leiden 0.91 41 0.34 s
Louvain 0.90 43 0.59 s
Infomap 0.76 2 108 11 m 15 s
SCoDA 0.45 10 988 0.45 s

Table 18.2: State-of-the-art algorithms and NCLiC

95

18.5 NCLiC with other clustering base algorithms

As previously mentioned, Leiden was used as the base clustering algorithm
in NCLiC. It may, however, be exchanged with other clustering algorithms.
For this purpose, tests were run in order to determine the performance
of NCLiC with different clustering algorithm. The tests were run with
k = 1024 and initial partition size of 20%. The initial partition was
clustered by Leiden for all tests. Figure 18.3 shows how graphs processed
in the the previous section performed, if the base clustering algorithm
was exchanged. The algorithms used were Leiden, Louvain and Infomap,
in addition to running no clustering algorithm. The way this was
accomplished, was by removing the clustering of the incoming chunk, and
in stead giving each new node its own cluster.

The results appear to be similar between the different base clustering
algorithms. Both modularity score and the number of communities found
seem to be the roughly the same, no matter which clustering algorithm
was used. A notable exception is when running NCLiC with no clustering
algorithm, the results are slightly to noticeably better. While the modularity
score of No pre-clustering algorithm is slightly higher across the board, the
number of communities found is significantly lower, pointing to the fact
that the merging of clusters is more aggressive in this approach. This
discovery is surprising, as the NCLiC algorithm was designed around the
premise that the clusters it receives from the chosen clustering algorithm
are important. The test, however, shows that the choice of the algorithm
may not be as important as initially thought, and that NCLiC does not
actually need to cluster the chunks beforehand. This also speeds up the
process, as an entire step of Leiden clustering may be removed (in addition
to several supporting actions required by the Python-igraph framework).
The significance of this discovery will be tested later in this thesis.

It is also noteworthy that the algorithm was able to run Infomap on the
SNAP YouTube graph in just over 4 minutes, when it previously stalled out
after over 3 hours of processing time! This leads to a possibility of running
slower algorithms by using NCLiC as an intermediary.

Graph Algorithm Modularity Communities Time

SBM

- 0.51 65 0.15 s
Leiden 0.48 101 0.18 s
Louvain 0.42 99 0.18 s
Infomap 0.46 103 0.26 s

SNAP Twitter

- 0.78 645 27.87 s
Leiden 0.76 935 26.61 s
Louvain 0.75 943 29.53 s
Infomap 0.76 1088 1 m 22 s

96

SNAP Email

- 0.08 35 0.75 s
Leiden 0.07 33 1.89 s
Louvain 0.04 33 0.95 s
Infomap 0.04 36 1.79 s

SNAP YouTube

- 0.65 51 791 55.84 s
Leiden 0.62 97 345 59.34 s
Louvain 0.62 97 598 57.29 s
Infomap 0.63 99 141 4 m 13 s

SNAP Amazon

- 0.84 20 059 18.07 s
Leiden 0.78 28 899 58.07 s
Louvain 0.78 29 114 58.95 s
Infomap 0.78 28 937 1 m 30 s

DIMACS Wing

- 0.62 7 045 2.36 s
Leiden 0.59 8 732 5.87 s
Louvain 0.59 8 760 5.94 s
Infomap 0.59 8 754 9.07 s

Table 18.3: NCLiC performance with different clustering algorithms

18.6 Shuffled versus Non-shuffled Graphs

The discovery of NCLiC performing better without a dedicated clustering
algorithm presented in previous section prompted us to conduct further
testing. Until now, most tests have been conducted on edge lists as-is,
provided by the source. These are often (but now always) sorted in some
way, for example listing all edges from one node before moving on to
the next one. Due to the fact that the NCLiC algorithm is dependent on
the order in which new edges are added, this method has been chosen
in order to not give any potential advantages or disadvantages to specific
runs, where the shuffling may have skewed the results. Table 18.4 shows
the difference in performance of NCLiC on shuffled and non-shuffled
variations of graphs. For the purpose of these tests, NCLiC was reverted to
use Leiden as the base clustering algorithm.

Graph Algorithm Modularity Communities Time

SBM

Non-shuffled 0.51 65 0.15 s
Shuffled 0.67 25 0.14 s

Twitter

97

Non-shuffled 0.78 645 27.87 s
Shuffled 0.81 228 2 m 46 s

Email

Non-shuffled 0.08 35 0.75 s
Shuffled 0.003 32 0.75 s

YouTube

Non-shuffled 0.65 51 791 55.84 s
Shuffled 0.66 106 603 5 m 59 s

Amazon

Non-shuffled 0.84 20 059 18.07 s
Shuffled 0.80 26 274 29.15 s

Wing

Non-shuffled 0.62 7 045 2.36 s
Shuffled 0.53 10 299 2.25 s

Table 18.4: NCLiC on shuffled vs non-shuffled edge lists

The results do not conclusively indicate that the shuffling the graphs
leads to higher modularity. The results between shuffled and non-shuffled
graphs vary to some degree, and the performance appears in some cases
to be better for non-shuffled graphs, while better for shuffled in other
instances. A discovery worth mentioning is that the shuffled graphs seem
to have a longer runtimes. Some quick testing seems to indicate that this
is due to the fact that more individual nodes are added simultaneously
through each chunk, meaning that the algorithm has more neighbours to
check. On average, about 20 % more neighbours were checked when the
graphs were randomly shuffled, than when using the original order of
the edge-lists. This may also be the reason for occasional performances
increase produced by the algorithm on the variations with shuffled edges.

In streaming problems, every ordering of the incoming data is a
separate problem. In processing of incremental graphs, every ordering
of chunks is. Discovering the potential optimal order would be an
interesting problem. However, due to the fact that the performance was
not consistently better across all graphs, this was deemed out of scope for
this thesis.

18.7 Weaknesses

The main weakness of NCLiC is that the runtime grows primarily with
the number of neighbours of nodes in each chunk. The algorithm will
run into performance problems if a dense network continues to grow
towards infinity. This limitation may be somewhat alleviated by probing
the neighbours; i.e. when the number of neighbours becomes too large,
a randomly chosen portion of these can be checked and the chosen

98

community extrapolated.
Another apparent problem of NCLiC is a problem that is common

amongst most of the clustering algorithms - the performance is extremely
dependent on the type of graphs that is being processed. The topology
of the graph dictates whether an algorithm will work on that graph or not.
This is as true for NCLiC as it is for the state-of-the-art algorithms presented
in this thesis.

99

100

Chapter 19

Large Scale Testing

19.1 K-merge on DIMACS10 (Leiden pre-clustering)

19.1.1 Implementation

In order to test the NCLiC merging algorithm on a larger scale, tests were
run on the DIMACS10 graph set. NCLiC, with Leiden as the base pre-
clustering algorithm, was run on 147 of the available 151 graphs. The
graphs that were larger than 900 MB, which translated to 108 million edges
or more, were not processed. The tests were run on the Simula Ex³ super
computer. The k-split was set to increase by powers of two in order to be
able to detect small changes in the beginning, when k is small and detect
trends as k grows. The graphs were split into two groups based on their
size, where graphs under 50 MB were run until k = 212, while graphs
between 50 MB and 900 MB were run up to k = 210. Additionally, all
graphs had an initial partition size of 20 %, meaning that the original graph
of the first run of every k-split had 20 % of all edges in the edge list. The
remaining 80 % of the edges were split into k parts. In order to make this
experiment reproducible, the graphs were not shuffled.

19.1.2 DIMACS10

The processed graphs vary widely in size. The smallest graph had 39
nodes and 340 edges, while the largest had over 16 million nodes and over
100 million edges. Additionally, the set consisted of weighted, random,
normal and multigraphs. Multigraphs are graphs that can have several
edges shared between the same pair of nodes. All graphs are undirected.

The graphs generally had high modularity when clustered with Leiden
- with an average modularity of 0.89. 112 graphs had a Leiden modularity
score over 0.90 and just 14 graphs had Leiden modularity of under 0.6. 21
graphs had a modularity score between 0.6 and 0.9. The graphs with the
lowest modularity were multigraphs, which had an average modularity of
0.06. Due to the fact that the NCLiC algorithm is not meant to be used on
multigraphs, these were removed from the results.

101

19.1.3 Results

The average performance of NCLiC in terms of modularity was 0.76. This
corresponds to about 83 % modularity retention compared to the Leiden
modularity score. The graphs that had the highest drop in modularity
were the multigraphs, with around 98 % drop. While this may appear
significant, the low starting modularity score results in an actual drop of
around 0.06 points of modularity. It is also worth mentioning that 99 of
142 graphs had a modularity drop of less than 20 %. Figure 19.1 depicts
the distribution of the graphs based on merged modularity retention.
The bars represent the number of graphs, while the line represents the
corresponding distribution in percent, split into 10 % bins. As seen, 93
% of graphs had modularity retention of 70 % or higher. Additionally, 26
graphs (18 %) had retention of 90 - 100 % .

Figure 19.2 shows change in modularity as k is increased, where Figure
19.2a shows the non-normalized numbers of the groups, while 19.2b
shows the modularity score as percent of the average score of the Leiden
algorithm. The graphs are partitioned into two groups - presented as huge
graphs and medium graphs. Graphs with the count of edges between 10
million and 100 million are considered huge. The rest of the set was called
medium do the the average number of edges in this set being 1.2 million.
The graphs in this set were up to 10 million edges. Additionally, an average
of the two groups is shown.

In figure 19.2a we can see that there seems to be little difference between
the performance of NCLiC on huge and medium graphs, with modularity
stabilising at about modularity of 0.8 at k = 4. The normalized figure
shows that the huge graphs have the highest drop in modularity initially,
but looking to improve slightly as k increases. In general terms, however,
it does not seem that the size of the graph has any significant impact on
modularity retention with average retention of huge graphs being 84 %
and for medium - 82 %.

Looking closer at the performance of NCLiC, an interesting discovery is
that all of the Open Street Map (OSM) graphs, presented in DIMACS10 set,
have low modularity loss (between 0 % and 10 %). These graphs are based
on real road networks in countries and regions, which have high diameter.
On the other hand, the graphs that NCLiC had difficulties with were of
a synthetic nature. It is important to mention that the DIMACS graphs
present two types of problems - partitioning and clustering. It is therefore
encouraging to see that the algorithm had a relatively stable performance
on both types.

19.2 K-merge on DIMACS10 (No pre-clustering)

19.2.1 Implementation

The discovery about the potential benefits of removing the clustering
algorithm in the pre-clustering phase of NCLiC, presented in Chapter 18
lead to the decision of running a separate test for the NCLiC algorithm

102

Figure 19.1: Modularity retention count

(a) Non-normalized (b) Normalised

Figure 19.2: Performance of NCLiC vs Leiden as k grows on SNAP Twitter Graph

with no pre-clustering. Apart from this change, the tests were identical
to the ones described above. The multigraphs were again removed from
consideration when running the tests and analysing the results.

19.2.2 Results

Figure 19.3 shows the distribution of modularity retention. The average
modularity of the clustering was 0.68, which corresponds to 74 %
modularity retention. Also here, the graph sizes did not seem to impact the
modularity score significantly, with huge graphs having 72 % modularity
retention and medium graphs - 75 %. The average modularity retention
was 9 % lower than what was achieved with its Leiden-based counterpart,
which is significant. Additionally, fewer graphs had modularity retention
of 80 - 90 %, and the largest portion of graphs (over 40 %) was now in
the 70 - 80 % range. It appears that the results achieved in Chapter 18,
were not representative for the general performance of NCLiC. Figure 19.4
depicts the performance as k is increased. It is interesting to see that
the performance of this variation of NCLiC seems to become better with

103

a higher number of partitions. The average modularity retention score
between k = 2 and k = 4096 is 0.7 (8 %), which indicates that processing
the graph in many small partitions can yield better results compared to few
large ones. While the variation did not produce a better result, these tests
serve to show the importance of trying out different clustering algorithms
used in the initial clustering phase of NCLiC. A possibility may also be to
add a switch based on the size of the input, running "Leiden-based NCLiC"
in the beginning to provide a good clustering base, while later switching
to "No-base NCLiC" providing the "self-fixing" benefits in the later stages of
the run. This, however, is deemed out of scope for this thesis.

Figure 19.3: Modularity retention count, no clustering algorithm

(a) Non-normalized (b) Normalised

Figure 19.4: Performance of NCLiC vs Leiden as k grows on SNAP Twitter Graph,
no clustering algorithm

104

Chapter 20

Contribution

This thesis has focused on community detection in incremental graphs. The
following topics were covered in this thesis.

The incremental nature of the graphs makes the current state-of-
the-art algorithms unviable, as it lies in the intersection of the regular
and stream-based clustering domains. This thesis has proposed a set of
requirements that need to be fulfilled in order to be successful in working
with incremental graphs. Based on these requirements, a novel approach
has been presented where a graph gets continuously updated in runtime
that is proportional to the size of the incoming partition of the graph.
This makes the merging feasible in a semi-streaming (on-line) scenario as
presented in the problem.

20.1 Testing of state-of-the-art algorithms

Several state-of-art algorithms were presented and evaluated in the thesis,
among these were the Leiden, Louvain, InfoMap, and SCoDA algorithms.
These algorithms were adapted and tested in an off-line and on-line
environments. Based on their performance, two algorithms, namely
SCoDA and Louvain, were chosen as candidates for further research,
with Louvain being an offline algorithm, while SCoDA - a streaming
algorithm. The two were extensively tested on nearly 6000 graphs and their
performance was recorded and evaluated.

20.2 Introduction of incremental graphs

In order to solve the problem at hand, encountered in the UMOD project,
a new definition of graphs was introduced. The implications of working
on these types of graphs, which are built incrementally, by adding new
partitions of the graph, were called incremental graphs, which, being in
the intersection between off-line and on-line domains, introduced several
novel problems, not covered in the literature currently available. A novel
take on using Leiden in a streaming scenario, which consisted of merging
the two state-of-art algorithms, SCoDA and Leiden, called SCODA-Leiden

105

was proposed. While this algorithm performed well, its worst-case runtime
was deemed sub-optimal, and further work on it was abandoned. This lead
to the establishment of a set of requirements for working with incremental
graphs. Additionally, this lead to the notion that a possible approach for
working with incremental graphs, is to design an algorithm that is able to
merge the incoming partitions in a way that leads to a minimal loss of good
clusters.

20.3 Testing framework for incremental graphs

During the course of this thesis there was a consistent need of comparing
different merging algorithms. A testing framework was developed for
that purpose, capable of splitting and merging graphs and their clusters,
called the k-split merge. Ten different merging techniques were tested.
Additional improvements were made to the initial approaches that lead
to better results. The framework was used and extended to cover the
necessary demands for information. The implementation and results of the
thorough testing of these, and other algorithms, on a number of different
graphs is described and presented in this thesis.

20.4 Incremental graph clustering algorithm

The main purpose of this thesis was to create a clustering algorithm
capable of clustering huge graphs with satisfactory results, while adhering
to the requirements of clustering incremental graphs. The different
iterations presented in this thesis lead to a concluding result of a novel
incremental clustering algorithm, called NCLiC, which was tested on over
150 different graphs. The tests showed that the algorithm’s runtime is
unrivaled to the alternative solution of reclustering the graphs as new
partitions are received. Its clustering performance is also very good, with
83 % average modularity retention, and over 95 % on some types of
graphs. In many cases it even performs better than the current state-of-art
streaming algorithms like SCoDA, and regular approaches like InfoMap
and Louvain.

106

Chapter 21

Future Work

21.1 Merging Algorithm

21.1.1 Implementation of Algorithms

During this thesis, the Python-igraph library has been primarily used as
the base for creating algorithms. While powerful and allowing for many
possibilities, it has some restrictions and problems attached to it. For a
possible way forward, a separate implementation should be considered,
not bound to Python-igraph. This would allow to streamline algorithms to
their primary purpose, making them faster and more adapted to solving
the problem.

Another part of this is to create the algorithms in another language
than Python. While it is extremely useful for prototyping and testing,
there are many other programming languages that are faster. A possible
solution may be to use C or C++, and several algorithms mentioned in this
thesis have a C++ implementation. While testing different algorithms, the
SCoDA C++ implementation was tested against its Python variant and it
was discovered that Python was over 50 % slower. This, however may be
due to differences in implementation, as Python language is considered to
be about 400 times slower than C++.

21.1.2 Using Leiden by contracting network

When developing the algorithms during this thesis, the main focus was
placed on the edge- and node-wise merging of graphs. Another possible
way of doing this may be by contracting graphs, i.e. treating discovered
clusters as nodes. Doing this may lead to increased processing speeds.
It is unknown whether this may provide better clustering results, and is
therefore not been a priority in this thesis. It should, however, be tested
further.

21.1.3 Weighted edges

The NCLiC algorithm designed in this thesis does not take into account
weights of a weighted graph. However, it is extensible, and can be adapted

107

with ease. I would argue that extending NCLiC to take into account
possible weights would make it perform even better, as it would have more
information about the importance of nodes. Modifying the link counting
to include weights would make the decision of changing communities of
each node easier and can be achieved by introducing a weight variable for
neighbouring nodes. By doing this in a smart way, for example by hashing
node ids and their weight, the performance would likely be even better,
reducing the reading of neighbours to linear time. Due to the fact that this
could be easily implemented and would potentially provide major benefits
to the clustering results, this should be one of the main priorities in the case
of further work with the NCLiC algorithm.

21.1.4 Additional network modifications

Many real-life networks are, as previously mentioned, dynamic by nature.
Usually, new nodes appear and form links to other nodes, but nodes and
links can also disappear. When looking at social media, this phenomenon
of graph rewiring occurs quite often. This can happen as users unfollow
previously followed users or topics and discover new ones. Users can
delete their accounts or get removed in some way, and on-line clustering
algorithms must accommodate these changes. The same is also true for
incremental graph-algorithms, which can receive different information in
the input partitions. The NCLiC algorithm in its current form does not
provide a way to cluster based on deletion of edges and/or nodes. A
possible way forward is therefore to implement this feature. This would
however mean, that the notions of deletion of edges and nodes must be
implemented in the algorithm.

In circumstances where graphs can evolve by both growing and
shrinking, the evolution can be split up into the following four tasks,
ranked by complexity:

1. Addition of nodes: users can create new profiles.

2. Addition of edges: users can follow other users.

3. Deletion of nodes and edges: users can delete their accounts or
unfollow users they previously followed.

4. Graph rewiring: simultaneous addition and removal of edges and
nodes

If the consideration of weights is already implemented, further im-
provements can be made based on the weight, implying importance, of
the edge that had been deleted. When working with deletion of nodes, the
graph must again be updated and all edges that this node had must be re-
moved. This is a far more challenging procedure, as several passes must
be made in order to ensure the best possible results. The steps should be
done as follows: firstly the edges of the deleted node must be removed.
Secondly, the graph must be reclustered to accommodate for the changes
this leads to. Keeping track of the neighbours of nodes, as is done by the

108

NCLiC algorithm, may be too computationally heavy in terms of perform-
ance. The operations required to accomplish this would be to loop through
a node’s list of neighbours and delete the node from the neighbour’s list,
followed by the deletion of the list itself. In terms of asymptotic time this
would take O(n) for looping through and accessing the list of n neighbours
and O(m) finding and deleting an entry from a list of the chosen node’s m
neighbours in addition to O(1) for deleting the list itself, leading to O(nm)
time complexity. Another approach may thus be needed to speed this up.
A possible solution to this may be to use a smart hashing algorithm.

21.1.5 Additional merging algorithms

During the exploration phase of this thesis, many different algorithms have
been tested. While Leiden appears to be the best possible algorithm cur-
rently available, some algorithms may have been overlooked. Additionally,
the work on clustering algorithms is always ongoing and the possibilities
of good clustering algorithms are ever expanding. The testing framework
created during this thesis is flexible enough to exchange the base clustering
algorithm, and this is advised in future work. Another unexplored approach
is to skip a base clustering algorithm altogether and develop an approach
where the clustering is integrated in the merging process. The NCLiC al-
gorithms relies on receiving partitions that can then be modified through
the merging process. An integrated clustering could lead to potentially sig-
nificant performance benefits. However, the challenge with this approach
is that the clustering algorithm does not have the information about the
whole graph, but only the last partition that it receives. Due to the potential
difficulties of implementation, working on this solution has been deemed
out of scope.

21.2 Testing Framework

21.2.1 Add other goodness measures

The primary fitness function for evaluating clustering that has been used
throughout this thesis is modularity. The reasons for that are listed in
Chapter 10.5. While using modularity for comparing different algorithms
is easy and gives a good basis for testing, it may be interesting to look
at other measures. Two commonly used measures of clustering cohesion
are Silhouette coefficient and Dunn index [83]. The Silhouette analysis
measures how well an observation is clustered by estimating the average
distance between clusters. The Dunn index also uses distance between
nodes to calculate how good the discovered clusters are. Apart from
these, several other methods of checking correctness of clustering exist.
These include the NMI (Normalized Mutual Information) score [58], which
compares the clusters discovered by the algorithm to the ground truth.
By adding new ways to test the performance of clustering algorithms, the
framework would become an even better tool for supporting research more
effectively.

109

21.2.2 Increase usability

The testing framework created in this thesis has been worked on by
only one person with little focus on usability and readability. While
the framework has some help text when running through terminal, it is
minimal and may be hard to use for people not familiar with it. It has
been integral in the research for this thesis, and could be made more user
friendly. In order to make it so, several elements should be implemented.
First and foremost, the framework is written in Python and should be
translated to a more robust language, like Java or C/C++, removing
the speed of the framework as a limitation of testing. Additionally, the
framework could be made more modular than it is today, allowing users
to pick and choose more easily which algorithms should be tested and
which measures should be reported. Doing this would possibly speed up
the work of this exciting research topic. However, one should consider if
the time and cost of this is warranted, as other matters mentioned above,
are deemed to be of higher priority.

110

Chapter 22

Conclusion

Graph theory is an exceedingly wide and diverse field, but is getting
more important as the amount of data available grows. With the onset of
social media, this has never been more true than now. The problems with
boundless content sharing brings with it an infinite amount of possibilities
and just as many problems. As we have seen in recent years, the
consequences of actions online can, in many cases, be felt in real life as
well. This is why projects like UMOD will continue to gain value and
importance.

In this thesis, we performed extensive tests on several of the current
state of the art clustering algorithm. We have also outlined and presented
a novel way of looking at on-line networks where data is incrementally
arriving in partitions, called incremental graphs. These types of graphs
share similarities with on-line and off-line networks, but have enough
differences to warrant a separation between the two types. Working with
incremental graphs presents new challenges, and a set of requirements
was proposed for working with these types of networks. Based on these
requirements a novel algorithm for clustering these types of graphs, called
NCLiC, has been proposed. The algorithm is fast and has a high average
modularity retention, compared to the baseline set by the Leiden algorithm.

The main challenge of working with incremental graphs is shared
with streaming-based graphs, namely that the data should be considered
infinite and at this point in time there are no clustering algorithms that
work on these types of graphs. The approach to clustering incremental
graphs proposed in this thesis is versatile and extensible, making it easy to
implement and adapt according to the needs of the user.

The NCLiC algorithm works by merging partitions of networks with a
graph stored in memory. By doing this in an efficient manner, the algorithm
is able to detect good clusters in a fraction of the time it would take to
recluster the graph each time new data arrives. The algorithm is also highly
versatile and modular, which makes it easy to improve. The algorithm
revolves around the notion that the neighbouring nodes are often a part
of the same cluster. This notion is grounded in a trivial observation of
the reality of social interaction - the chance of two persons forming a
connection when they know each other is higher than if they had never

111

met. This can be further extrapolated to the notion of "if many of your friends
share an interest, it is probable that you will share that interest as well".

NCLiC shows promising results on most types of graphs and in several
cases, appears to perform better than some of the older, established
and popular clustering algorithms. When compared to a streaming
algorithm, SCoDA, NCLiC detects better clusters. NCLiC is also fast, and
even the Python implementation promises to save time, when compared
to the alternative method of reclustering the whole graph every time
new data arrives. During tests it was much faster than the popular
Infomap algorithm. With a more performance focused implementation, the
algorithm would be fast enough for massive graphs.

Throughout this thesis many different types of approaches has been
tested and the results of these tests have been presented. My hope is that
the work presented here may be useful for potential future research in the
field of community detection and graph theory.

112

Bibliography

[1] Quote Investigator. A Lie Can Travel Halfway Around the World While
the Truth Is Putting On Its Shoes. URL: https://quoteinvestigator.com/
2014/07/13/truth/.

[2] New York Times: Niraj Chokshi. That Wasn’t Mark Twain: How a
Misquotation Is Born. URL: https://www.nytimes.com/2017/04/26/
books/famous-misquotations.html.

[3] Daniel Thilo Schroeder, Konstantin Pogorelov and Johannes Lang-
guth. ‘FACT: a Framework for Analysis and Capture of Twitter
Graphs’. In: IEEE, 2019, pp. 134–141. DOI: 10 . 1109 / SNAMS . 2019 .
8931870.

[4] Business Insider. The 10 most-viewed fake-news stories on Facebook in
2019 were just revealed in a new report. URL: https://www.businessinsider.
com/most- viewed- fake-news- stories- shared-on- facebook-2019-2019-
11?r=US&IR=T#10-joe-biden-calls-trump-supporters-dregs-of-society-
1.

[5] BCC News. QAnon: What is it and where did it come from? URL: https:
//www.bbc.com/news/53498434.

[6] The New York Times. ‘PizzaGate’ Conspiracy Theory Thrives Anew in
the TikTok Era. URL: https://www.nytimes.com/2020/06/27/technology/
pizzagate-justin-bieber-qanon-tiktok.html.

[7] Gabrielle Bruney Michael Sebastian. Years After Being Debunked,
Interest in Pizzagate Is Rising—Again. URL: https://www.esquire.com/
news-politics/news/a51268/what-is-pizzagate/.

[8] Vox. How the 5G coronavirus conspiracy theory went from fringe to
mainstream. URL: https://www.vox.com/recode/2020/4/24/21231085/
coronavirus-5g-conspiracy-theory-covid-facebook-youtube.

[9] The New York Times. Cambridge Analytica and Facebook: The Scandal
and the Fallout So Far. URL: https://www.nytimes.com/2018/04/04/us/
politics/cambridge-analytica-scandal-fallout.html.

[10] New York Post. Twitter is tweaking misinformation flags to make them
easier to spot. URL: https://nypost.com/2020/10/06/twitter- tweaks-
misinformation-flags-to-make-them-easier-to-spot/.

[11] Facebook. Working to Stop Misinformation and False News. URL: https:
//www.facebook.com/formedia/blog/working-to-stop-misinformation-
and-false-news.

113

https://quoteinvestigator.com/2014/07/13/truth/
https://quoteinvestigator.com/2014/07/13/truth/
https://www.nytimes.com/2017/04/26/books/famous-misquotations.html
https://www.nytimes.com/2017/04/26/books/famous-misquotations.html
https://doi.org/10.1109/SNAMS.2019.8931870
https://doi.org/10.1109/SNAMS.2019.8931870
https://www.businessinsider.com/most-viewed-fake-news-stories-shared-on-facebook-2019-2019-11?r=US&IR=T#10-joe-biden-calls-trump-supporters-dregs-of-society-1
https://www.businessinsider.com/most-viewed-fake-news-stories-shared-on-facebook-2019-2019-11?r=US&IR=T#10-joe-biden-calls-trump-supporters-dregs-of-society-1
https://www.businessinsider.com/most-viewed-fake-news-stories-shared-on-facebook-2019-2019-11?r=US&IR=T#10-joe-biden-calls-trump-supporters-dregs-of-society-1
https://www.businessinsider.com/most-viewed-fake-news-stories-shared-on-facebook-2019-2019-11?r=US&IR=T#10-joe-biden-calls-trump-supporters-dregs-of-society-1
https://www.bbc.com/news/53498434
https://www.bbc.com/news/53498434
https://www.nytimes.com/2020/06/27/technology/pizzagate-justin-bieber-qanon-tiktok.html
https://www.nytimes.com/2020/06/27/technology/pizzagate-justin-bieber-qanon-tiktok.html
https://www.esquire.com/news-politics/news/a51268/what-is-pizzagate/
https://www.esquire.com/news-politics/news/a51268/what-is-pizzagate/
https://www.vox.com/recode/2020/4/24/21231085/coronavirus-5g-conspiracy-theory-covid-facebook-youtube
https://www.vox.com/recode/2020/4/24/21231085/coronavirus-5g-conspiracy-theory-covid-facebook-youtube
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
https://nypost.com/2020/10/06/twitter-tweaks-misinformation-flags-to-make-them-easier-to-spot/
https://nypost.com/2020/10/06/twitter-tweaks-misinformation-flags-to-make-them-easier-to-spot/
https://www.facebook.com/formedia/blog/working-to-stop-misinformation-and-false-news
https://www.facebook.com/formedia/blog/working-to-stop-misinformation-and-false-news
https://www.facebook.com/formedia/blog/working-to-stop-misinformation-and-false-news

[12] Simula. UMOD: Understanding and Monitoring Digital Wildfires. URL:
https://www.simula.no/research/projects/umod- understanding- and-
monitoring-digital-wildfires.

[13] Niall J. Conroy, Victoria L. Rubin and Yimin Chen. ‘Automatic Decep-
tion Detection: Methods for Finding Fake News’. In: Proceedings of the
78th ASIST Annual Meeting: Information Science with Impact: Research
in and for the Community. ASIST ’15. St. Louis, Missouri: American
Society for Information Science, 2015. ISBN: 087715547X.

[14] Computing Veracity – the Fourth Challenge of Big Data. URL: https ://
www.pheme.eu/.

[15] Santo Fortunato. ‘Community detection in graphs’. In: Physics Reports
486.3-5 (Feb. 2010), pp. 75–174. ISSN: 0370-1573. DOI: 10 . 1016 / j .
physrep . 2009 . 11 . 002. URL: http : / / dx . doi . org / 10 . 1016 / j . physrep .
2009.11.002.

[16] Albert-Lázsló Barabási. Network Science. Cambridge, United King-
dom: Cambridge University Press, 2016.

[17] Brittanica. Graph Theory. URL: https : / /www . britannica . com/ topic /
graph-theory.

[18] AWS Amazon. What is Streaming Data? URL: https://aws.amazon.com/
streaming-data/.

[19] Ziv Bar-Yossef, Ravi Kumar and D. Sivakumar. ‘Reductions in
Streaming Algorithms, with an Application to Counting Triangles
in Graphs’. In: Proceedings of the Thirteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms. SODA ’02. San Francisco, California:
Society for Industrial and Applied Mathematics, 2002, pp. 623–632.
ISBN: 089871513X.

[20] Michael Elkin and Jian Zhang. ‘Efficient algorithms for constructing
(1 + ε, β)-spanners in the distributed and streaming models’. In:
Distributed Computing 18 (Apr. 2006), pp. 375–385. DOI: 10 . 1007 /
s00446-005-0147-2.

[21] ‘Pearson’s Correlation Coefficient’. In: Encyclopedia of Public Health.
Ed. by Wilhelm Kirch. Dordrecht: Springer Netherlands, 2008,
pp. 1090–1091. ISBN: 978-1-4020-5614-7. DOI: 10 .1007/978- 1 - 4020-
5614-7_2569. URL: https://doi.org/10.1007/978-1-4020-5614-7_2569.

[22] Alex Pothen. Graph Partitioning Algorithms with Applications to Sci-
entific Computing. Tech. rep. USA, 1997.

[23] Jierui Xie, Stephen Kelley and Boleslaw K. Szymanski. ‘Overlapping
Community Detection in Networks: The State-of-the-Art and Com-
parative Study’. In: 45.4 (Aug. 2013). ISSN: 0360-0300. DOI: 10.1145/
2501654.2501657. URL: https://doi.org/10.1145/2501654.2501657.

114

https://www.simula.no/research/projects/umod-understanding-and-monitoring-digital-wildfires
https://www.simula.no/research/projects/umod-understanding-and-monitoring-digital-wildfires
https://www.pheme.eu/
https://www.pheme.eu/
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
https://www.britannica.com/topic/graph-theory
https://www.britannica.com/topic/graph-theory
https://aws.amazon.com/streaming-data/
https://aws.amazon.com/streaming-data/
https://doi.org/10.1007/s00446-005-0147-2
https://doi.org/10.1007/s00446-005-0147-2
https://doi.org/10.1007/978-1-4020-5614-7_2569
https://doi.org/10.1007/978-1-4020-5614-7_2569
https://doi.org/10.1007/978-1-4020-5614-7_2569
https://doi.org/10.1145/2501654.2501657
https://doi.org/10.1145/2501654.2501657
https://doi.org/10.1145/2501654.2501657

[24] J. Chitra Devi and E. Poovammal. ‘An Analysis of Overlapping Com-
munity Detection Algorithms in Social Networks’. In: Procedia Com-
puter Science 89 (2016). Twelfth International Conference on Commu-
nication Networks, ICCN 2016, August 19– 21, 2016, Bangalore, India
Twelfth International Conference on Data Mining and Warehousing,
ICDMW 2016, August 19-21, 2016, Bangalore, India Twelfth Interna-
tional Conference on Image and Signal Processing, ICISP 2016, Au-
gust 19-21, 2016, Bangalore, India, pp. 349–358. ISSN: 1877-0509. DOI:
https : //doi . org/10 . 1016/ j . procs . 2016 . 06 . 082. URL: http : //www.
sciencedirect.com/science/article/pii/S1877050916311474.

[25] M. E. J. Newman and M. Girvan. ‘Finding and evaluating community
structure in networks’. In: Phys. Rev. E 69 (2 Feb. 2004), p. 026113. DOI:
10.1103/PhysRevE.69.026113. URL: https://link.aps.org/doi/10.1103/
PhysRevE.69.026113.

[26] M. E. J. Newman. In: PNAS 103.23 (June 2006), pp. 8577–8582. DOI:
https://doi.org/10.1073/pnas.0601602103.

[27] Xin Jin and Jiawei Han. ‘Partitional Clustering’. In: Encyclopedia of
Machine Learning. Ed. by Claude Sammut and Geoffrey I. Webb.
Boston, MA: Springer US, 2010, pp. 766–766. ISBN: 978-0-387-30164-8.
DOI: 10.1007/978-0-387-30164-8_631. URL: https://doi.org/10.1007/
978-0-387-30164-8_631.

[28] Michal J. Garbade. Understanding K-means Clustering in Machine
Learning. URL: https://towardsdatascience.com/understanding-k-means-
clustering-in-machine-learning-6a6e67336aa1.

[29] Hamid Bouchachia. ‘Dynamic Clustering’. In: Evolving Systems 3
(Sept. 2012). DOI: 10.1007/s12530-012-9062-5.

[30] R.L. Winkler. An Introduction to Bayesian Inference and Decision. In-
ternational series in decision processes. Holt, Rinehart and Winston,
1972. ISBN: 9780030813276. URL: https://books.google.no/books?id=
GHB2QgAACAAJ.

[31] Aaron Clauset, M. E. J. Newman and Cristopher Moore. ‘Finding
community structure in very large networks’. In: Phys. Rev. E 70 (6
Dec. 2004), p. 066111. DOI: 10.1103/PhysRevE.70.066111. URL: https:
//link.aps.org/doi/10.1103/PhysRevE.70.066111.

[32] Jure Leskovec et al. Community Structure in Large Networks: Natural
Cluster Sizes and the Absence of Large Well-Defined Clusters. 2008. arXiv:
0810.1355 [cs.DS].

[33] Pollner, P., Palla, G. and Vicsek, T. ‘Preferential attachment of
communities: The same principle, but a higher level’. In: Europhys.
Lett. 73.3 (2006), pp. 478–484. DOI: 10.1209/epl/i2005-10414-6. URL:
https://doi.org/10.1209/epl/i2005-10414-6.

[34] Renaud Labiotte Vincent D. Blondel Jean-Loup Guillaume and
Etienne Lefebvre. ‘Fast unfolding of communities in large networks’.
In: J. Stat. Mech. (July 2008). DOI: https : / / doi . org / 10 . 1088 /1742 -
5468/2008/10/P10008.

115

https://doi.org/https://doi.org/10.1016/j.procs.2016.06.082
http://www.sciencedirect.com/science/article/pii/S1877050916311474
http://www.sciencedirect.com/science/article/pii/S1877050916311474
https://doi.org/10.1103/PhysRevE.69.026113
https://link.aps.org/doi/10.1103/PhysRevE.69.026113
https://link.aps.org/doi/10.1103/PhysRevE.69.026113
https://doi.org/https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1007/978-0-387-30164-8_631
https://doi.org/10.1007/978-0-387-30164-8_631
https://doi.org/10.1007/978-0-387-30164-8_631
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://doi.org/10.1007/s12530-012-9062-5
https://books.google.no/books?id=GHB2QgAACAAJ
https://books.google.no/books?id=GHB2QgAACAAJ
https://doi.org/10.1103/PhysRevE.70.066111
https://link.aps.org/doi/10.1103/PhysRevE.70.066111
https://link.aps.org/doi/10.1103/PhysRevE.70.066111
https://arxiv.org/abs/0810.1355
https://doi.org/10.1209/epl/i2005-10414-6
https://doi.org/10.1209/epl/i2005-10414-6
https://doi.org/https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/https://doi.org/10.1088/1742-5468/2008/10/P10008

[35] Joshua R. Tyler, Dennis M. Wilkinson and Bernardo A. Huberman.
‘Email as Spectroscopy: Automated Discovery of Community Struc-
ture within Organizations’. In: Communities and Technologies. NLD:
Kluwer, B.V., 2003, pp. 81–96. ISBN: 1402016115.

[36] Amanda L. Traud et al. ‘Comparing Community Structure to Charac-
teristics in Online Collegiate Social Networks’. In: SIAM Review 53.3
(Jan. 2011), pp. 526–543. ISSN: 1095-7200. DOI: 10 . 1137/080734315.
URL: http://dx.doi.org/10.1137/080734315.

[37] D. Axelsson M. Rosvall. ‘The map equation’. In: The European Physical
Journal Special Topics 178.1 (Nov. 2009), p. 10. DOI: https://doi.org/10.
1140/epjst/e2010-01179-1.

[38] D. A. Huffman. ‘A Method for the Construction of Minimum-
Redundancy Codes’. In: Proceedings of the IRE 40.9 (1952), pp. 1098–
1101. DOI: 10.1109/JRPROC.1952.273898.

[39] Lawrence Page et al. The PageRank Citation Ranking: Bringing Order
to the Web. Technical Report 1999-66. Previous number = SIDL-WP-
1999-0120. Stanford InfoLab, Nov. 1999. URL: http://ilpubs.stanford.
edu:8090/422/.

[40] L. Waltman V.A. Traag and N.J. van Eck. ‘From Louvain to Leiden:
guaranteeing well-connected communities’. In: Sci Rep 9.5233 (Mar.
2019), p. 12. DOI: https://doi.org/10.1038/s41598-019-41695-z.

[41] Ludo Waltman and Nees Jan van Eck. ‘A smart local moving
algorithm for large-scale modularity-based community detection’.
In: The European Physical Journal B 86.11 (Nov. 2013). ISSN: 1434-6036.
DOI: 10.1140/epjb/e2013-40829-0. URL: http://dx.doi.org/10.1140/
epjb/e2013-40829-0.

[42] Naoto Ozaki, Hiroshi Tezuka and Mary Inaba. ‘A Simple Accelera-
tion Method for the Louvain Algorithm’. In: International Journal of
Computer and Electrical Engineering 8 (Jan. 2016), pp. 207–218. DOI:
10.17706/IJCEE.2016.8.3.207-218.

[43] Seung-Hee Bae et al. ‘Scalable and Efficient Flow-Based Community
Detection for Large-Scale Graph Analysis’. In: ACM Trans. Knowl.
Discov. Data 11.3 (Mar. 2017). ISSN: 1556-4681. DOI: 10.1145/2992785.
URL: https://doi.org/10.1145/2992785.

[44] V. A. Traag. ‘Faster unfolding of communities: Speeding up the
Louvain algorithm’. In: Phys. Rev. E 92 (3 Sept. 2015), p. 032801. DOI:
10.1103/PhysRevE.92.032801. URL: https://link.aps.org/doi/10.1103/
PhysRevE.92.032801.

[45] Alexandre Hollocou et al. ‘A linear streaming algorithm for com-
munity detection in very large networks’. In: CoRR abs/1703.02955
(2017). arXiv: 1703.02955. URL: http://arxiv.org/abs/1703.02955.

[46] Joan Feigenbaum et al. ‘On Graph Problems in a Semi-streaming
Model’. In: July 2004, pp. 531–543. ISBN: 978-3-540-22849-3. DOI: 10.
1007/978-3-540-27836-8_46.

116

https://doi.org/10.1137/080734315
http://dx.doi.org/10.1137/080734315
https://doi.org/https://doi.org/10.1140/epjst/e2010-01179-1
https://doi.org/https://doi.org/10.1140/epjst/e2010-01179-1
https://doi.org/10.1109/JRPROC.1952.273898
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
https://doi.org/https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1140/epjb/e2013-40829-0
http://dx.doi.org/10.1140/epjb/e2013-40829-0
http://dx.doi.org/10.1140/epjb/e2013-40829-0
https://doi.org/10.17706/IJCEE.2016.8.3.207-218
https://doi.org/10.1145/2992785
https://doi.org/10.1145/2992785
https://doi.org/10.1103/PhysRevE.92.032801
https://link.aps.org/doi/10.1103/PhysRevE.92.032801
https://link.aps.org/doi/10.1103/PhysRevE.92.032801
https://arxiv.org/abs/1703.02955
http://arxiv.org/abs/1703.02955
https://doi.org/10.1007/978-3-540-27836-8_46
https://doi.org/10.1007/978-3-540-27836-8_46

[47] András A. Benczúr and David R. Karger. ‘Approximating <i>s-t</i>
Minimum Cuts in <i>Õ</i>(<i>n</i>²) Time’. In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing. STOC ’96. Philadelphia, Pennsylvania, USA: Association
for Computing Machinery, 1996, pp. 47–55. ISBN: 0897917855. DOI:
10.1145/237814.237827. URL: https://doi.org/10.1145/237814.237827.

[48] Arnau Prat-Pérez, David Dominguez-Sal and Josep-Lluis Larriba-
Pey. ‘High quality, scalable and parallel community detection for
large real graphs’. In: Apr. 2014, pp. 225–236. DOI: 10.1145/2566486.
2568010.

[49] Learning Hub: Davin Pickell. Qualitative vs Quantitative Data – What’s
the Difference? URL: https://learn.g2.com/qualitative-vs-quantitative-
data.

[50] U. Brandes et al. Maximizing Modularity is hard. Sept. 2006.

[51] TutorialsPoint. Data Structures - Asymptotic Analysis. URL: https : / /
www . tutorialspoint . com / data _ structures _ algorithms / asymptotic _
analysis.html.

[52] GeeksforGeeks. Analysis of Algorithms | Big-O analysis. URL: https :
//www.geeksforgeeks.org/analysis-algorithms-big-o-analysis/.

[53] GeeksforGeeks. Analysis of Algorithms | Set 3 (Asymptotic Notations).
URL: https : / / www . geeksforgeeks . org / analysis - of - algorithms - set -
3asymptotic-notations/.

[54] Cmglee. File: Comparison computational complexity.svg. URL: https ://
en.wikipedia.org/wiki/File:Comparison_computational_complexity.svg.

[55] Konect. Zachary Karate Club. URL: http://konect.cc/networks/ucidata-
zachary/.

[56] Stanford University. Social circles: Twitter. URL: https://snap.stanford.
edu/data/ego-Twitter.html.

[57] SNAP. email-Eu-core network. URL: https ://snap.stanford .edu/data/
email-Eu-core.html.

[58] Simone Romano et al. ‘Standardized Mutual Information for Clus-
tering Comparisons: One Step Further in Adjustment for Chance’.
In: Proceedings of the 31st International Conference on Machine Learning.
Ed. by Eric P. Xing and Tony Jebara. Vol. 32. Proceedings of Machine
Learning Research 2. Bejing, China: PMLR, June 2014, pp. 1143–1151.
URL: http://proceedings.mlr.press/v32/romano14.html.

[59] Richard M. Karp. ‘On-Line Algorithms Versus Off-Line Algorithms:
How Much is It Worth to Know the Future?’ In: Proceedings of the IFIP
12th World Computer Congress on Algorithms, Software, Architecture -
Information Processing ’92, Volume 1 - Volume I. NLD: North-Holland
Publishing Co., 1992, pp. 416–429. ISBN: 044489747X.

[60] Wayne W Zachary. ‘An information flow model for conflict and
fission in small groups’. In: Journal of anthropological research (1977),
pp. 452–473.

117

https://doi.org/10.1145/237814.237827
https://doi.org/10.1145/237814.237827
https://doi.org/10.1145/2566486.2568010
https://doi.org/10.1145/2566486.2568010
https://learn.g2.com/qualitative-vs-quantitative-data
https://learn.g2.com/qualitative-vs-quantitative-data
https://www.tutorialspoint.com/data_structures_algorithms/asymptotic_analysis.html
https://www.tutorialspoint.com/data_structures_algorithms/asymptotic_analysis.html
https://www.tutorialspoint.com/data_structures_algorithms/asymptotic_analysis.html
https://www.geeksforgeeks.org/analysis-algorithms-big-o-analysis/
https://www.geeksforgeeks.org/analysis-algorithms-big-o-analysis/
https://www.geeksforgeeks.org/analysis-of-algorithms-set-3asymptotic-notations/
https://www.geeksforgeeks.org/analysis-of-algorithms-set-3asymptotic-notations/
https://en.wikipedia.org/wiki/File:Comparison_computational_complexity.svg
https://en.wikipedia.org/wiki/File:Comparison_computational_complexity.svg
http://konect.cc/networks/ucidata-zachary/
http://konect.cc/networks/ucidata-zachary/
https://snap.stanford.edu/data/ego-Twitter.html
https://snap.stanford.edu/data/ego-Twitter.html
https://snap.stanford.edu/data/email-Eu-core.html
https://snap.stanford.edu/data/email-Eu-core.html
http://proceedings.mlr.press/v32/romano14.html

[61] NetworkX. Software for Complex Networks. URL: https://networkx.org/
documentation/stable/index.html.

[62] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large
Network Dataset Collection. June 2014. URL: http://snap.stanford.edu/
data.

[63] Timothy A. Davis and Yifan Hu. ‘The University of Florida Sparse
Matrix Collection’. In: ACM Trans. Math. Softw. 38.1 (Dec. 2011). ISSN:
0098-3500. DOI: 10.1145/2049662.2049663. URL: https://doi.org/10.
1145/2049662.2049663.

[64] SuiteSparce Matrix Collection. Group DIMACS10. URL: https://sparse.
tamu.edu/DIMACS10.

[65] V. Batagelj and M. Zaversnik. An O(m) Algorithm for Cores Decomposi-
tion of Networks. 2003. arXiv: cs/0310049 [cs.DS].

[66] Illés Farkas Gergely Palla Imre Derényi and Tamás Vicsek. ‘Uncov-
ering the overlapping community structure of complex networks in
nature and society’. In: Nature 10 (2005), pp. 814–818. DOI: 10.1038/
nature03607.

[67] Shie Mannor et al. ‘K-Means Clustering’. In: Encyclopedia of Machine
Learning. Springer US, 2011, pp. 563–564. DOI: 10.1007/978- 0- 387-
30164-8_425. URL: https://doi.org/10.1007%5C%2F978-0-387-30164-
8_425.

[68] Aaron Clauset, M. E. J. Newman and Cristopher Moore. ‘Finding
community structure in very large networks’. In: Physical Review E
70.6 (Dec. 2004). ISSN: 1550-2376. DOI: 10.1103/physreve.70.066111.
URL: http://dx.doi.org/10.1103/PhysRevE.70.066111.

[69] Gephi. The Open Graph Viz Platform. URL: https://gephi.org/.

[70] JetBrains. The Python IDE for Professional Developers. URL: https : / /
www.jetbrains.com/pycharm/.

[71] NumPy. The fundamental package for scientific computing with Python.
URL: https://numpy.org/.

[72] Python Igraph. URL: https://igraph.org/python/.

[73] NetworKit. Large-scale Network Analysis. URL: http://wiki.ex3.simula.
no/doku.php.

[74] Simula Ex3. Simula Research Laboratory AS research cluster. URL: https:
//www.jetbrains.com/pycharm/.

[75] Oracle Labs. Infomap. URL: https://docs.oracle.com/cd/E56133_01/2.
6.1/reference/algorithms/weighted_infomap.html.

[76] V Nicosia et al. ‘Extending the definition of modularity to directed
graphs with overlapping communities’. In: Journal of Statistical
Mechanics: Theory and Experiment 2009.03 (Mar. 2009), P03024. DOI:
10.1088/1742-5468/2009/03/p03024. URL: https://doi.org/10.1088%
5C%2F1742-5468%5C%2F2009%5C%2F03%5C%2Fp03024.

118

https://networkx.org/documentation/stable/index.html
https://networkx.org/documentation/stable/index.html
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://sparse.tamu.edu/DIMACS10
https://sparse.tamu.edu/DIMACS10
https://arxiv.org/abs/cs/0310049
https://doi.org/10.1038/nature03607
https://doi.org/10.1038/nature03607
https://doi.org/10.1007/978-0-387-30164-8_425
https://doi.org/10.1007/978-0-387-30164-8_425
https://doi.org/10.1007%5C%2F978-0-387-30164-8_425
https://doi.org/10.1007%5C%2F978-0-387-30164-8_425
https://doi.org/10.1103/physreve.70.066111
http://dx.doi.org/10.1103/PhysRevE.70.066111
https://gephi.org/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://numpy.org/
https://igraph.org/python/
http://wiki.ex3.simula.no/doku.php
http://wiki.ex3.simula.no/doku.php
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://docs.oracle.com/cd/E56133_01/2.6.1/reference/algorithms/weighted_infomap.html
https://docs.oracle.com/cd/E56133_01/2.6.1/reference/algorithms/weighted_infomap.html
https://doi.org/10.1088/1742-5468/2009/03/p03024
https://doi.org/10.1088%5C%2F1742-5468%5C%2F2009%5C%2F03%5C%2Fp03024
https://doi.org/10.1088%5C%2F1742-5468%5C%2F2009%5C%2F03%5C%2Fp03024

[77] Nicolas Dugué and Anthony Perez. Directed Louvain : maximizing
modularity in directed networks. Nov. 2015. DOI: 10 . 13140 /RG . 2 . 1 .
4497.0328.

[78] Alexandre Hollocou. GitHub repository: SCODA: A linear streaming
algorithm for community detection in very large networks. URL: https :
//github.com/ahollocou/scoda.

[79] NetworkX. networkx.algorithms.assortativity.average_neighbor_degree. URL:
https : //networkx . org/documentation/ stable //reference/algorithms/
generated/networkx.algorithms.assortativity.average_neighbor_degree.
html.

[80] Stanford Network Analysis Project. email-Eu-core network. URL: https:
//snap.stanford.edu/data/email-Eu-core.html.

[81] Stanford Network Analysis Project. Youtube social network. URL: https:
//snap.stanford.edu/data/com-Youtube.html.

[82] Stanford Network Analysis Project. Amazon product co-purchasing
network. URL: https://snap.stanford.edu/data/com-Amazon.html.

[83] Data Novia. Cluster Validation Statistics: Must Know Methods. URL:
https://www.datanovia.com/en/lessons/cluster- validation- statistics-
must-know-methods/.

119

https://doi.org/10.13140/RG.2.1.4497.0328
https://doi.org/10.13140/RG.2.1.4497.0328
https://github.com/ahollocou/scoda
https://github.com/ahollocou/scoda
https://networkx.org/documentation/stable//reference/algorithms/generated/networkx.algorithms.assortativity.average_neighbor_degree.html
https://networkx.org/documentation/stable//reference/algorithms/generated/networkx.algorithms.assortativity.average_neighbor_degree.html
https://networkx.org/documentation/stable//reference/algorithms/generated/networkx.algorithms.assortativity.average_neighbor_degree.html
https://snap.stanford.edu/data/email-Eu-core.html
https://snap.stanford.edu/data/email-Eu-core.html
https://snap.stanford.edu/data/com-Youtube.html
https://snap.stanford.edu/data/com-Youtube.html
https://snap.stanford.edu/data/com-Amazon.html
https://www.datanovia.com/en/lessons/cluster-validation-statistics-must-know-methods/
https://www.datanovia.com/en/lessons/cluster-validation-statistics-must-know-methods/

	Introduction
	Fake News and Digital Wildfires
	UMOD Project
	Topic for the Thesis

	Motivation
	Graph Theory
	History
	Community Detection

	Continuously Arriving Data
	Data Streaming
	Incremental Graphs

	Goals
	Contribution

	Document Outline
	Clustering Theory
	What is a Network?
	Properties of Networks
	Community detection

	Community Detection Problems
	Definition of Community
	Graph Partitioning
	Overlapping Community Detection

	Modularity-Based Methods
	Modularity
	Modularity-optimization methods
	Modularity optimization
	Greedy techniques
	Simulated annealing
	Extremal optimization
	Spectral optimization

	Other Community Detection Methods
	Hierarchical Clustering
	Agglomerative algorithms
	Divisive algorithms

	Partitional Clustering
	Spectral Clustering
	Dynamic Clustering
	Statistical Inference

	General Properties of Real-World Clusters
	Applications on real-world networks

	Clustering Algorithms
	Infomap
	Overview
	Algorithm

	Louvain Method
	Introduction
	Algorithm
	Performance

	Leiden Algorithm
	Overview
	Algorithm

	SCoDA
	Overview
	Algorithm

	Approach
	Introduction
	Method
	Evaluation Criteria
	Asymptotic Time Complexity
	Modularity

	On-line versus Off-line Algorithms
	Benchmark Networks

	Exploration Phase
	Algorithms
	Tools and frameworks

	Comparing Off-Line Algorithms
	Off-Line Algorithms on Incremental Graphs
	Implementation
	Evaluation
	Summary

	Comparing Off- and On-Line Algorithms
	Implementation
	Results
	Evaluation
	Summary

	Designing an On-Line Incremental Algorithm
	SCoDA-Leiden Algorithm
	Requirements for clustering incremental graphs

	Designing a Merging Clustering Algorithm
	Introduction
	Process
	Definition of terms

	2-split merge
	Merging approaches
	Phases of merging
	Refinement approaches
	Testing 2-split of graphs

	Testing k-split of graphs
	Approaches for base merging algorithm
	Conducting k-split test
	Preliminary evaluation

	Improving the merging algorithms
	Performance of improved merging algorithms
	Python-igraph and k-split merging
	Conclusion

	The NCLiC Algorithm
	Introduction
	Steps of NCLiC
	NCLiC Example
	Whole graph
	Initial partition
	2nd partition
	3rd partition
	Final partition
	Summary

	Evaluation
	Runtime vs Goodness of Clusters
	Leiden runtime
	NCLiC runtime
	Leiden vs NCLiC

	Initial partition size
	Merging and Graph Characteristics
	NCLiC vs Current State-of-the-art Algorithms
	Graph Description
	Testing

	NCLiC with other clustering base algorithms
	Shuffled versus Non-shuffled Graphs
	Weaknesses

	Large Scale Testing
	K-merge on DIMACS10 (Leiden pre-clustering)
	Implementation
	DIMACS10
	Results

	K-merge on DIMACS10 (No pre-clustering)
	Implementation
	Results

	Contribution
	Testing of state-of-the-art algorithms
	Introduction of incremental graphs
	Testing framework for incremental graphs
	Incremental graph clustering algorithm

	Future Work
	Merging Algorithm
	Implementation of Algorithms
	Using Leiden by contracting network
	Weighted edges
	Additional network modifications
	Additional merging algorithms

	Testing Framework
	Add other goodness measures
	Increase usability

	Conclusion

