
Observing Reddit’s Interaction
Network

A stream-based approach for large scale
Network Analysis on Reddit

Andreas Huber

Thesis submitted for the degree of
Master in Programming and System Architecture

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2021

Observing Reddit’s Interaction
Network

A stream-based approach for large scale
Network Analysis on Reddit

Andreas Huber

© 2021 Andreas Huber

Observing Reddit’s Interaction Network

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

The area of misinformation is attracting considerable interest since the
2016 presidential elections in the United States of America [5] or when
conspiracy theories linked 5G with the coronavirus. Misinformation can
have drastic implications in the real world. Analyzing social media
data offers a way to detect where misinformation originates from and
how it spreads. The Understanding and Monitoring Digital Wildfires
(UMOD) project at Simula Research Laboratory focuses on monitoring
digital wildfires and developing improved prevention and preparedness
techniques to counteract misinformation. This work aims to add Reddit as
an additional data source to the UMOD project. We, therefore, demonstrate
how to build a massive graph between subreddits on Reddit from a parallel
streamed dataset. We, therefore, introduce the Reddit Dataset Stream
Pipeline (RDSP), a processing pipeline for the Reddit dataset based on
Akka Streams. We then show methods to create a graph between the
subreddits on Reddit and weigh them. We investigate the generated graphs
and present the experiments’ results, including a visualization of the graph.
This thesis provides the foundation for the UMOD project to investigate
further how misinformation spreads on Reddit.

i

ii

Contents

I Introduction 1

1 Introduction 3
1.1 Problem definition . 4
1.2 Contributions . 5
1.3 Outline of the Thesis . 6

2 Background 9
2.1 What is Reddit? . 9
2.2 Why is Reddit relevant to detect misinformation? 10
2.3 Possible data sources . 11

2.3.1 Official Reddit API . 11
2.3.2 The Pushshift Reddit Dataset 11
2.3.3 Pusher real-time Reddit API 13

2.4 Reddit data structure . 13
2.4.1 Pushshift data structure 14
2.4.2 Exemplary graph structure 15

2.5 Actor Model . 15
2.6 Akka Streams . 16
2.7 JGraphT . 17
2.8 Gephi . 19
2.9 Gradle . 20
2.10 sbt . 21
2.11 Named Pipes . 21
2.12 Experimental Infrastructure for Exploration of Exascale

Computing (eX³) . 21
2.13 Related work . 22

II The project 23

3 Approach 25
3.1 Understanding the Pushshift Reddit Dataset 26
3.2 Reddit Dataset Stream Pipeline 28

3.2.1 Statistics mode . 30
3.2.2 Passtrough mode . 31
3.2.3 Streams Flow Implementation 32
3.2.4 Steps to get the data ready for the graph stage 32

iii

3.3 Graph Building . 33
3.3.1 Reddit Graph tool . 34
3.3.2 Evolution of the graph creation 35

3.4 Supporting Tools . 39
3.4.1 Scheduling with SLURM 39
3.4.2 Continuous Integration (CI) builds, tests, and auto-

matic updates . 41

4 Implementation 43
4.1 Reddit Dataset Stream Pipeline 43

4.1.1 Command-line interface 43
4.1.2 System setup . 44
4.1.3 Akka streams architecture 45
4.1.4 Pass-through mode . 47
4.1.5 Statistics mode . 50
4.1.6 Unit Tests . 53

4.2 Graph Building . 55
4.2.1 Building the graph . 55
4.2.2 Exporting the graph 57
4.2.3 Technical details of loading the graph 58
4.2.4 Command-line interface 58

4.3 Python scripts . 59
4.4 Supporting Tools . 59

5 Experiments 61
5.1 Top n subreddits . 61

5.1.1 Number of unique users in subreddits between 2005
and 2019 . 62

5.1.2 Number of contributions in subreddits between 2005
and 2019 . 62

5.2 Graph scores . 65
5.2.1 Vertex scores . 65
5.2.2 Edge scores . 66

5.3 Graph visualization . 67

III Conclusion 73

6 Outlook 75
6.1 Challenges . 76
6.2 Limitations . 77
6.3 Future Work . 77

iv

List of Figures

2.1 Simplified class diagram of Reddit’s object model used for
the API. Only the relevant classes and properties are displayed. 14

2.2 Scheme of the proposed exemplary graph, illustrating the
different possible relationships between users, submissions,
subreddits and comments. 15

2.3 Sample graph displaying users (blue) that posted in subred-
dits (red). The cluster in the middle is composed of users
that posted in both subreddits. 16

2.4 Illustration of an actor with a state and behaviour and the
message queue. 17

2.5 JGraphT class diagram that shows the core structure of the
library [26]. 18

2.6 Gephi user interface. In the center of the user interface (UI)
is the graph. Currently, it shows a sample subreddit graph,
where the nodes are colored based on their modularity class.
The toolbar on the left holds the configurations for the graph
appearance and the layout algorithms. The right toolbar
shows the graph context and the panels to filter the graph
and execute statistics. 20

3.1 Illustrates the necessary steps to generate the graph from the
dataset. The fist step is to use the Reddit Dataset Stream
Pipeline on the left for reading, prepossessing and filtering.
The second step to build the graphs with JGraphT and
calculate the scores. With those graphs we can perform
further experiments and build visualizations in step 3. 26

3.2 Architecture concept overview of the Reddit dataset stream
pipeline. 29

v

3.3 Evolution of the weighting function. The first stage illus-
trates the simplest form of an undirected graph subreddit
graph. For every user that posted in two subreddits, an edge
is created. For a situation like the top 10000 subreddits with
many more users, this usually results in a fully connected
graph since it is likely that at least one user posted in two
subreddits. Therefore this is a first step towards building the
graph. In the next step, the edges are weighted by count-
ing the users that posted in the two subreddits an edge con-
nects. This provides us with a simple edge weight that gives
a first indication of which subreddits belong together. The
final weight function considers the importance of neighbors.
Once we filter out edges with low weights, we can visualize
a graph that indicates which subreddits belong together. . . 34

3.4 Creating a simple unweighted graph. Given the Comma-
separated values (CSV) list, which indicates which users
contributed in which subreddit at the left, we can create a
simple undirected graph. Andreas posted in the subreddits
fun and java, so we can create an edge between fun and java.
Daniel posted in java and berlin, so an edge between java
and berlin is created. Last haseeb posted in fun and berlin,
so we make an edge between fun and berlin. This results in
a simple graph without any edge weights taken into account
yet. 36

3.5 From CSV to Hashmap to Graph. todo: extend description . 36
3.6 Unique subreddit combinations per user in matrix represen-

tation. 37
3.7 The four stages of building the graph. Graph rendered in

Gephi using the Force Atlas 2 layout algorithm [24] with
gravity set to 1 and scaling set to 50. Graph 3.7a shows the
graph without weights, which means the graph is layouted
only based on the number of edges each node has. Graph
3.7b uses the user count Uij as a weight, which results in a
graph that gets pulled close together. Graph 3.7c depicts the
same graph with the custom weight function. The groups of
nodes are more distinct than in the previous graph. Graph
3.7d shows the graph with the custom weights, but around
1/3 of the edges with low edge weights are filtered due to
their low importance. 40

3.8 CI stages. The application is developed locally. Once a new
feature is ready, it is then pushed into a feature branch on
Github. On Github, the CI Build verifies that the code is
compilable and tests pass. If the CI build passes, the code can
be merged to the master branch. From there, the automatic
CI Build is started again, but this time the generated package
is uploaded to an Azure Blob Store. From there, it can be
downloaded to eX³ by the update script, which extracts and
overwrites the old version with the new one. 41

vi

4.1 Caption . 44
4.2 CPU usage in htop on 256 threads on two ThunderX2

CN9980 - Cavium 32 core ARM processors. Most of the 256
threads show a more than 90 % usage. We documented the
CPU usage during the "count users in subreddits" processing
at the beginning of the run. 46

4.3 Graph 4.3a shows the concept of how the Akka Streams
Graph is built. More text describing the graph. The Data
flow diagram 4.3b illustrates how Akka Streams parallelize
the defined graph. More text describing the process. 47

4.4 Graph 4.4a shows More text describing the graph. The Data
flow diagram 4.4b illustrates, how . More text describing the
process. 49

4.5 Graph 4.5a shows More text describing the graph. The Data
flow diagram 4.5b illustrates, how . More text describing the
process. 54

4.6 Example graph between the subreddits we get if we draw
an edge for every unique combination (AB, AC, BC) between
the subreddits A, B, C. 56

4.7 The SLURM queue on eX³. In the queue, there are Various
tasks to filter and build the graphs. Currently, we are
running the tasks on three different queues using a total of
14 nodes in parallel. The active tasks are for graph building,
filtering and creating subsets of the dataset. 60

5.1 Distribution of uniqe users per subreddit. TODO: Explain
numbers 1e8. Log scale . 63

5.2 Distribution of user contributions per subreddit. TODO:
Explain numbers 1e8. Log scale. 64

5.3 Vertex list top 10k 2005-2019 basic metrics 68
5.4 Edge list top 10k 2005-2019 basic metrics 69
5.5 The final graph of subreddit relations from Gephi for the top

1000 subreddits. 70
5.6 The final graph of subreddit relations from Gephi for the top

10000 subreddits. 71

vii

viii

List of Tables

2.1 Size comparison between the compressed and extracted
Reddit submissions and comments August 2019. 12

2.2 Dataset size estimation using the compressed sizes and the
compression ratios from the August 2019 sample in Table 2.1. 12

2.3 List of all possible full name prefixes the Reddit API uses. . . 13

3.1 Pushshift submissions dataset description. Copied from the
paper The Pushshift Reddit Dataset [4]. 27

3.2 Pushshift comments dataset description. Copied from the
paper The Pushshift Reddit Dataset [4]. 28

5.1 Top 10 subreddits by unique users between 2005-2019 64
5.2 Top 10 subreddits by contributions between 2005-2019 . . . 65

ix

x

Acknowledgments

I want to take this opportunity to thank the people who supported and
helped while shaping this thesis.

First, I want to thank my supervisor Daniel Thilo Schröder for support-
ing me in defining the outline of this thesis and shaping this thesis, as
well as providing me his expertise in various fields, especially in graph
theory. Furthermore, I want to thank my supervisors Johannes Langguth
and Carsten Griwodz for their general support, counseling, critically read-
ing this thesis and many practical suggestions for improvements. I want to
thank all my supervisors for the time they spent in countless meetings and
the valuable insights they provided me.

I want to thank the Simula Research Laboratory for providing me the
project and a place to work.

The research presented in this paper has benefited from the Experimental
Infrastructure for Experimental Infrastructure for Exploration of Exascale
Computing (eX³), which is financially supported by the Research Council
of Norway under contract 270053.

I am thankful to my fellow student Haseeb Rana, who spent his time at
the office with me and was always there to discuss new approaches.

Finally, I want to thank my friends and family, especially my wife
Aleksandra, for her mental support and for making life more enjoyable.

xi

xii

Part I

Introduction

1

Chapter 1

Introduction

Fake news and misinformation are becoming a severe worldwide concern.
Harmful misinformation spread on social media can have drastic impli-
cations in the real world. In recent years the impact of missinformation
came into the discussion surrounding the 2016 presidential elections in
the United States of America [5] or when conspiracy theories linked 5G
with the coronavirus, which resulted in arson and vandalism against phone
masts in the United Kingdom [1].

Analyzing social media data offers a way to detect where misinformation
originates from and how it spreads.

The Understanding and Monitoring Digital Wildfires (UMOD) project
at the Simula Research Laboratory focuses on the monitoring of digital
wildfires and developing improved prevention and preparedness tech-
niques to counteract misinformation [25].

For understanding how misinformation spreads, it is crucial to obtain
data from various sources. The project previously focused on data collected
from Twitter and GDELT. The FACT framework provides capabilities to
capture and analyze Twitter graphs [43]. The introduction of Reddit as
an additional data source allows a different perspective on the world of
missinformation. In contrast to Twitter, it is easier to obtain textual content
from Reddit but harder to establish connections between individual users.

Reddit is organized in topical sub-communities. In Reddit’s terms, a
sub-community is called a subreddit. Those communities are primarily
user-generated and user-moderated and come in various sizes [45].
Subreddits are independent, meaning there is no direct connection to link
or group subreddits together. A user subscribing to a subreddit indicates
that the user has an interest in that topic. However, Reddit does not disclose
which users subscribe to which subreddits. What is visible is which users
commented or posted (contributed) in which subreddit by looking at all
posts and comments. We believe that these expressions of interest in
combination with the interaction in specific subreddits open the possibility
to observe missinformation in a “map of ideas”.

3

Why is Reddit crucial? Reddit is a social news aggregator, where
information from all over the internet is aggregated and discussed in
decentralized topics. It is particularly relevant because the discussions on
Reddit are open and cover a huge number of topics with different opinions
from all around the world. Not having a character limit (unlike Twitter)
and the possibility to see a discussion tree also enable more profound
and richer conversations. Furthermore, like other social media platforms,
Reddit has been targeted by disinformation campaigns before [51].

Why Reddit over time? Misinformation does not appear out of nowhere.
Instead, it spreads over time before it becomes visible. To see how
misinformation spreads, and not only the finite state is relevant to track
the evolution of the spread. Therefore it is necessary to investigate the
previously mentioned “map of ideas” over time. Only then dynamics over
time will show how misinformation evolves, spreads, and might behave in
the future.

This thesis, therefore, aims to build a framework for massive temporal
Reddit graph analysis, which allows us to investigate the world of
subreddits from its beginning.

1.1 Problem definition

The topic of this thesis is the design of methods to process, create, and
understand Reddit graphs in order to be able to analyze the behavior of
Reddit over time. The research question of this thesis is:

Given a Reddit datastream, how to build a large-scale data processing
framework that allows examining Reddit’s interaction graph over

time?

We conceive this process as a triad involving data acquisition, massive
data analysis, and graph building. Whereby the latter includes the
development of a model for discovering and weighing the relationship
between subreddits. In the course of the process, we are faced with the
following challenges:

Massive Data On Reddit, information from all over the web is gathered
and discussed. Considering it claims to have 52 million daily users in
October 2020 [30] and according to the Alexa traffic rank the 19th most
popular website on the internet [38], we need to deal with one principal
problem: The dataset size is enormous, and working with this amount of
data is a challenge.

Graph Building Another problem is the data structure. Reddit is orga-
nized in topical communities called subreddits, and these communities are
independent. They do not have categories, neighbors and not relatable via

4

the data structure itself. So there is no obvious way of grouping subreddits
together. In order to visualize and measure relationships between subred-
dits, a method to connect subreddits has to be developed. Then it could be
possible to find out which subreddits relate to and influence each other.

Graph size With a developed method, there is still the challenge that the
graph has to be built. With the high number of users on Reddit, it is to
be expected that the graph between subreddits is highly connected. The
number of edges in a fully connected undirected graph with n verticies is
n(n−1)

2 . Storing the adjacency matrix thous takes O(n2) space. Memory
consumption and compute time are therefore a concern.

Temporal Graphs Considering a social network, it is interesting to
inspect changes in structure over time. Therefore the time dimension
should be considered while generating the graph. Theoretically, we could
generate a graph for every change, but this approach is not feasible given
the massive data problem. As a solution, we propose to create time slices of
the graph, giving us multiple views in time and the possibility to compare
them.

Prepare for streaming The UMOD project focuses on the monitoring of
digital wildfires and developing improved prevention and preparedness
techniques to counteract misinformation [25]. For the project to benefit
from the monitoring in its final stage, newer data than the one from
archived datasets is required. The created processing pipeline should be
built with the possibility of streaming in mind. It then can be extended
later so the archive dataset can be combined with live data from Reddit.
Processing streams can be more challenging than simple batch processing
because new data continuously arrives, and streams are not bounded in
size [48].

1.2 Contributions

This thesis consists of three parts. The first part focuses on the Reddit
Dataset Stream Pipeline (RDSP) and building a processing pipeline for
the Reddit dataset based on Akka Streams. The second part focuses on
developing methods to create a graph between subreddits on Reddit and
weigh them. The third part discusses the generated graphs and presents
experimental results on these graphs.

Reddit Dataset Stream Pipeline In order to tackle the problem of file
size, this thesis introduces an approach to read, extract, filter, analyze
and transform the Reddit dataset with Akka Streams in parallel. “Akka
Streams implements the Reactive Streams standard within the larger Akka
concurrency project.” [9] Reactive Streams are a way to provide highly
responsive applications that can handle multiple requests per second while

5

also handling backpressure [10]. Since the resulting pipeline is stream-
based, it can be extended to function with live data in the future.

Graph Building Method Considering the independence of subreddits, a
method to overcome it by building a graph with edges between subreddits
from user contributions is shown. Furthermore, a weighting method that
takes the importance of neighbors into account is applied to those edges.

Paralell Score Calculation With expanding graph sizes, the time to
complete the computation of all scores on the graph single-threaded
consumes too much time - and therefore also blocks compute resources
for longer than necessary. Considering that it is necessary to test multiple
iterations of the algorithm and that the results have to be checked promptly,
a single-threaded calculation is not an option. Therefore the scores and
weight of edges and vertices are calculated in parallel over multiple
iterations to build the graph in a timely manner.

Graph Visualization Understanding if the created graph is meaningful
and resembles the landscape of Reddit, a visual representation is needed.
Therefore, this thesis shows a visual representation of the subreddit
landscape of the top 10.000 subreddits. To get a helpful visualization, edges
with low edge weights are filtered, and the graph layout is based on the
developed edge weight. This is necessary because otherwise, the rendered
graph would show more edges than one can comprehend.

Experiments and Distributions Furthermore, the thesis gathers and
discusses the distributions of the scores in the graph and provides a more
detailed overview of the landscape of Reddit.

Raw Graphs and Time Slices To make the results more accessible and to
make it possible for others to base their work upon these results, with this
thesis we release the graphs as DOT files and as edge and vertex CSV lists.
Further, pre-generated time slices from 2005 to 2019 are released as well -
even though the results are not discussed in this thesis. The time slices are
released as DOT files and as edge and vertex CSV lists.

Project Contribution This thesis is the first contribution to the UMOD
project concerning Reddit. It makes Reddit as a data source more accessible
and provides prepared graphs that can be further explored.

1.3 Outline of the Thesis

Chapter 2 provides a necessary overview on topics concerned in this
thesis. Starting from a quick overview about Reddit, why it is relevant,
and what the data structure looks like, to the Pushshift Reddit dataset that
acts as the main data source. The reader gets a quick introduction to Actors,

6

Akka, and Akka Streams. Concerning the graph creation, the background
chapter provides a short overview of the java library JGraphT. Finally, the
chapter presents the eX³ platform 1 and the SLURM workload manager [50]
used to schedule work on eX³.

Chapter 3 illustrates the ideas and methods behind the developed
software. It mainly focuses on two parts—the dataset processing part
with the Reddit Dataset Stream Pipeline and the graph creation part.
The dataset processing part provides a short overview of operations and
transformations performed on the dataset and how parallelism is solved
with Akka streams. It also provides general insight on design choices
around the data flow within the actor system. The graph building stage
discusses how the data provided by the Reddit Dataset Stream Pipeline is
aggregated to build the first graph. Given the first graph, the approach
discusses multiple iterations of improving the graph model to finally get a
useful weighted graph representing the subreddit landscape of Reddit. The
last part discusses the tooling, like the slurm workload manager, to process
the datasets on multiple nodes in the eX³ cluster.

Chapter 4 describes the implementation process and gives deeper insight
on how to understand and use the programs. As in Chapter 3, the
implementation chapter focuses on mainly two parts - the Reddit Dataset
Stream Pipeline and the graph building. The Reddit Dataset Stream
Pipeline section discusses the whole feature set of the program and the
flow of data within Akka Streams in detail. Moreover, it explains all the
necessary steps to get the data ready for the graph creation phase. The
graph building section discusses building the graph with detailed insight
on important design choices during the implementations. Furthermore, the
technical details of exporting and loading the graphs section is elaborated.
Finally, the section explains how to use the command line interface of the
program.

Chapter 5 Based on the Reddit graph, this chapter discusses experiments
performed on the graph and our findings. We present basic statistics on
the top n subreddits. Further, we present metrics we calculate on the graph
and show our attempt at visualizing the graph.

Chapter 6 shows a perspective on how the gained knowledge and toolset
can be used and how it will integrate with the UMOD project. The outlook
chapter discusses future changes, proposes new changes, and where to go
from there. It primarily focuses on what steps have to be undergone to
create a system that supports live streaming. Finally, we conclude what
has been achieved and what potential there is for future improvement.

1https://www.ex3.simula.no/

7

https://www.ex3.simula.no/

8

Chapter 2

Background

Chapter 2 is concerned with providing relevant base knowledge to get
a better understanding of this Thesis scope. In this chapter, first, we
illustrate what Reddit is, how it is structured and why it is relevant. We
present possible Reddit data sources and the Reddit data structure. We
then introduce utilized concepts, frameworks, and tools and discuss related
work.

2.1 What is Reddit?

Reddit is a social news site that aggregates a continuous flow of user-
submitted posts. According to Reddit’s CEO Steve Huffman, “Reddit is a
platform where users can discuss anything imaginable” [21]. The relevance
of a post or comment is determined by its age and how users rank the
post by voting it up or down. Reddit shows the most popular posts on its
homepage [49]. To better understand how Reddit works, it is essential to
discuss its building blocks first.

Subreddits. Reddit is comprised of thousands of primarily user-gener-
ated, and user-moderated topical sub-communities of various sizes. In
Reddit’s terms, a community is a so-called subreddit [45]. A subreddit is
identified by its unique URL in the scheme of /r/subredditname. The sub-
reddit Politics, for example, is accessible under the URL www.reddit.com/
r/politics. A subreddit and its discussions are usually open accessible to be
read by everyone that visits the site [2]. Still, there is the possibility to create
private subreddits [11], and some subreddits might be quarantined, which
hides them from new users [21]. Reddit reported more than 130.000 active
communities as of December 4, 2019. [20].

Posts. All registered users can submit posts to a subreddit whether they
subscribed to the corresponding subreddit or not. Users can post new
content as “self-posts” and links. Self-posts are text posts that are saved
to Reddit directly where link posts point to various external sources such
as articles, images, or videos [45].

9

https://www.reddit.com/r/politics/
https://www.reddit.com/r/politics/

Comments. All registered users can comment on the initial post or in
reply to other comments. The result is a hierarchical discussion tree where
users answer to previous comments or create an entirely new comment in
answer to the post [45].

Voting. Posts and comments can be upvoted or downvoted by registered
users. Reddit uses a ranking function based on time and votes. Thereby
votes have a direct influence on the order in which Reddit displays the
posts on the page.

Karma. Users receive karma points when other users upvote their posts
or comments, and they lose karma points when they receive downvotes.
For example, if a user’s comment receives five upvotes and one downvote,
the user gains four karma points for the post. Reddit counts post karma and
comments karma independently. Users do not earn karma on self-posts.
Users with a large amount of karma are considered more active or valuable
members of the community. As a reward, users with a high amount of
karma are allowed to post more frequently [49]. The amount of karma a
user has earned can be seen by hovering over their username or accessing
their profile page [2].

2.2 Why is Reddit relevant to detect misinformation?

The objective of the thesis is to gather social network data from sources
other than Twitter and predict information spreading within this data.
Although further evaluation of data sources is part of the thesis, my
preparations have already shown that Reddit is a potential candidate for
a data source due to its open nature, easy to handle API, and the existence
of substantial historic datasets [4]. Furthermore, Reddit’s spreading data is
relatively easy to extract using existing libraries such as The Python Reddit
API Wrapper (PRAW) 1 compared to, e.g., Twitter spreading graphs which
require one to overcome massive technical obstacles.

Data from Reddit is relevant for research because “...it arguably enables
richer user interactions than other sites, such as Facebook and Twitter” [8].
Moreover, the conversations on Reddit are not restricted to one topic per
se. Due to its open API, the data is more accessible and not as limited as
the data that other social media sites provide through their API. Reddit also
claims to be bot and crawler friendly, as long as they do not exceed usage
limits or lie about their identity [37].

For the UMOD research project, Reddit is one of many possible data
sources. Undoubtedly the project can benefit from as many sources as
possible. Fortunately, Reddit itself aggregates various sources on a large
scale. It is relevant to see how misinformation spreads from and to multiple
sites to analyze how misinformation spreads. Since Reddit uses links, it
would be possible to link tweets to posts and vice versa across those two

1PRAW: The Python Reddit API Wrapper https://praw.readthedocs.io.

10

https://praw.readthedocs.io

data sources and many more in the future. There is also the hypothesis that
some fake news stories or ideas might originate on Reddit. Furthermore,
many popular fake news stories will land on Reddit eventually.

2.3 Possible data sources

2.3.1 Official Reddit API

Reddit provides an extensive Rest API that allows developers to integrate
third-party applications with Reddit. Many pages on Reddit can also not
only be requested as an HTML page but also as JSON, XML, or RSS file,
by adding “.json”, “.xml” or “.rss” to the URL. If you wanted to view the
platforms newest posts from www.reddit.com/r/all/new/ in JSON format,
the modified URL would be www.reddit.com/r/all/new/.json.

Reddit has an API rate limitation of 60 requests per minute. How
many requests your application has remaining and when the time window
resets is provided via the “X-Ratelimit-Remaining” and “X-Ratelimit-
Reset" HTTP headers. API clients applications must also be authenticated
using OAuth2 and offer a unique User-Agent string. By requesting
multiple resources at a time, it is possible to increase the queried data by
a certain amount without circumventing the request limit. For example,
instead of requesting each submission at a time, we could request the 100
newest submissions by increasing the limit to 100 www.reddit.com/r/all/
new/.json?limit=100 [37]. But there is still a limit of how much data can
be requested. In this example, 100 results are the maximum number of
submissions the API returns.

Third-party clients for the Reddit API exist for various programming
languages [36]. The implementations and features vary from project to
project. PRAW for example, provides functionality to query the API but
also more intelligent features such as submission streams and automatic
rate limit handling.

The Reddit API provides all the desired data, but scraping all of Reddit
while respecting their limits does not seem to be feasible. Also, aggregating
and storing the results would undoubtedly require substantial resources.

2.3.2 The Pushshift Reddit Dataset

Pushshift is a five-year-old platform that collects Reddit data and exposes
it through an API. Compared to the Reddit API, the Pushshift API allows
researchers to query historic Reddit data more easily, including full-text
search against submissions and comments. They also provide a higher API
limits than Reddit [4]. There are three queryable API endpoints to obtain
information about subreddits, submissions, and comments:

• /reddit/subreddit/search

• /reddit/submission/search

• /reddit/comment/search

11

https://www.reddit.com/r/all/new/
https://www.reddit.com/r/all/new/.json
https://www.reddit.com/r/all/new/.json?limit=100
https://www.reddit.com/r/all/new/.json?limit=100

Dataset Compressed Extracted Ratio
Submissions August 2019 6507 MB 68490 MB 1:10.53
Comments August 2019 16789 MB 186005 MB 1:11.7

Table 2.1: Size comparison between the compressed and extracted Reddit
submissions and comments August 2019.

Dataset Compressed Extracted
Submissions 200.03 GB 2.11 TB
Comments 653.96 GB 7.25 TB
Total 854.04 GB 9.35 TB

Table 2.2: Dataset size estimation using the compressed sizes and the
compression ratios from the August 2019 sample in Table 2.1.

The API provides extensive functionality to filter and search based on the
content and simply restrict the result ranges by ID or date. Because Reddit’s
IDs are sequential, this is a simple way to query, e.g., missing comment
ranges.

Compressed monthly archives. In addition to the searchable API, the
Pushshift Reddit dataset also provides its data as monthly dumps. The
dumps are available as compressed Newline Delimited JSON (NDJSON)
files, where each line represents an object (e.g., a single comment or an
individual submission). The archives are available under files.pushshift.io/
reddit. The compressed size is around 200 GB for all the submissions and
654 GB for the comments from June 2005 until September 2019. To estimate
the uncompressed size of the whole dataset, samples from the submissions
and comments were taken. Table 2.1 shows the sample’s compressed and
uncompressed sizes as well as the compression ratio. To estimate the
extracted size of all the dumps together, we took the compression ratios
from the sample above and applied them to summed up file sizes in Table
2.2.

This method is far from precise because it does not take the different
compression algorithms, content types, and file sizes into account, but it
provides a solid basis to understand the amount of data that we have to
deal with.

The advantage of these archives is that they are easy to obtain since no
rate limit or login is required. They are files, so we can store the archives
and read them by a magnitude faster than the Rest API. The disadvantages
are that the dumps are only created when the Pushshift team triggers the
export. Therefore the data available in the dumps can lag several months
behind. The Pushshift dumps also do not provide time-series information
– meaning they only offer one snapshot for every submission or comment
at the time that it has been crawled [35].

12

https://files.pushshift.io/reddit/
https://files.pushshift.io/reddit/

Type prefix Data type
t1_ Comment
t2_ Account
t3_ Link
t4_ Message
t5_ Subreddit
t6_ Award

Table 2.3: List of all possible full name prefixes the Reddit API uses.

Pushshift Elastic Search API. Pushshift also provides access to the Elastic
Search API. Cloudflare currently blocks access to the API due to misuse. It
is possible to get whitelisted upon request [34].

2.3.3 Pusher real-time Reddit API

Pusher provides a commercial real-time API that lets you subscribe to a
subreddit and get notifications for new posts. In theory, this could provide
the data we need, but it does not seem practical to maintain a subscription
to each of the over 130.000 subreddits [33].

2.4 Reddit data structure

Every object in Reddit’s API is a thing. A thing is a universal base class that
has an ID, a kind that specifies the underlying data type and a full name.
A full name combines the kind of a thing (e.g. a comment) and the unique
ID to generate a compact, globally unique object ID on Reddit. Full names
have the scheme type_id, for example for a comment t1_1ac81d. Table 2.3
lists all the possible full name prefixes and their corresponding data types
[39].

Reddit IDs are regular ascending numeric IDs that are Base36 encoded.
The created interface simply provides a unified way to determine when
an entity has been created. Moreover, the votable interface provides com-
monly used properties for voting. The subreddit entity holds the details
about a subreddit. Most importantly, its unique URL /r/subredditname.
A link is the data type for a post. Based on whether the self text or link
field is filled, the post is a self-post or a link. The comment data type is
associated with a link via the link_id. Suppose the comment is a reply
to a parent post, then the parent_id points to the comment in response.
Therefore the parent_id allows hierarchical comments. Figure 2.1 shows a
simplified class diagram of Reddit’s object model.

13

thing

+ id: String
+ kind: String
+ name: String

listing

+ after: String
+ before: String

«interface»
votable

+ down: int
+ likes: bool
+ ups: int

«interface»
created

+ created: long
+ created_utc: long

comment

+ author: String
+ body: String
+ link_id: String
+ parent_id: String
+ subreddit: String

link

+ domain: string
+ score: int
+ selftext: String
+ sticked: bool
+ subreddit: String
+ title: String
+ url: String

subreddit

+ accounts_active: int
+ description: String
+ display_name: String
+ subscribers: long
+ title: String
+ url: String

message

+ author: String
+ body: String
+ name: String
+ parent_id: String

account

+ comment_karma: int
+ id: String
+ link_karma: int
+ name: String

0..*

1..*

0..*

1..*

0..*

1..*

0..*

1..*

0..*

1..*

Figure 2.1: Simplified class diagram of Reddit’s object model used for the
API. Only the relevant classes and properties are displayed.

2.4.1 Pushshift data structure

The dataset is split up into monthly dumps.

Submissions are stored as a flat list (one submission object per line).
The relationships to the author and subreddit entities can be generated by
matching the unique author name and the subreddit ID. If a submission is a
link, there might be additional metadata within the object (e.g., thumbnails
or HTML code to embed a youtube video).

The dataset organizes comments in a flat list (one comment object per
line); there is no hierarchy within the dataset. The recursive comment
structure has to be recreated by matching the ID with other comments
parent IDs as described in Chapter 2.4 as well with their subreddits.
Pushshift provides a single file containing all the users, including metadata,
and another one for all the subreddits with metadata. All the entities in the
dataset represent the state at the time they were scraped by the Pushshift
ingest script. Therefore each object contains a retrieved_on field – a Unix
timestamp with the time and date it was retrieved. The relationships
between the different entities must be recreated during processing or a
database import to get a relational data structure.

14

COMMENTED

COMMENTMADE

ISREPLYTO

JOINED

POSTED

Comment

Submission

Subreddit

User

Figure 2.2: Scheme of the proposed exemplary graph, illustrating the
different possible relationships between users, submissions, subreddits and
comments.

2.4.2 Exemplary graph structure

Figure 2.2 depicts an exemplary and partial graph scheme that visualizes
relationships between the most important entities. The graph model
describes which users JOINED which subreddit, which User POSTED a
submission, and which user posted a comment. It also associates in which
subreddit a submission or comment was posted and to which external
domain they link. This graph structure can be modified and extended
based on the needs of a specific experiment. Figure 2.3 shows a sample
of what evaluations we could do with the model. The red dots represent
subreddits, and the blue dots the users that posted into the subreddit. The
graph illustrates that the users in the central cluster were active in both
subreddits.

2.5 Actor Model

To support the current development workflows of developers writing for
concurrent and distributed systems, the Actor Model, defined in 1973
in a paper by Carl Hewitt, provides a higher abstraction level that lets
developers avoid complicated thread management and working with locks
to write concurrent and parallel systems. Ericsson has used the model to
build highly concurrent and reliable telecom systems and has benefited
immensely.

In computer science terms, actors are computational entities that encap-
sulate state and behavior and can additionally do the following units of
work, in no expected sequence, in response to the messages they receive
[23]:

• send a finite number of messages to other actors

15

Figure 2.3: Sample graph displaying users (blue) that posted in subreddits
(red). The cluster in the middle is composed of users that posted in both
subreddits.

• create a finite number of new actors

• select behavior for next time a message is received

The model enables asynchronous communication by allowing each recipi-
ent of a message to be identified by a "mailing address," which can only be
obtained by the sender actor if it received it in a message or was the actor
that spawned the recipient. The actor system makes sure that each actor
processes a single message at a time. When the actor processes a message,
it can modify its state, switch to a new behavior for the following mes-
sage or send a message to another actor. Figure 2.4 illustrates this behavior
where the actors send messages to a recipient actor from whom they have
an address with no restriction on message arrival order.

In summary, the actor model is characterized by concurrency of compu-
tation within and among actors, dynamic creation of actors, actor addresses
in messages, and interaction only through direct asynchronous messages
[18] [17].

2.6 Akka Streams

Most of the popular services on the web require the streaming of data.
Typical examples are downloading Netflix movies or uploading youtube
content. Thus streaming data becomes necessary as most datasets are too
large to be processed as a whole. In order to spread these computations,
the datasets are broken down, fed sequentially, and processed, as streams,
through CPUs [22].

16

Actor

Actor

Actor

Behavior

State

Actor Mailbox /
Message Queue

Figure 2.4: Illustration of an actor with a state and behaviour and the
message queue.

Akka streams API offers an intuitive and secure way to create stream
processing setups that can efficiently execute and limit the usage of systems
resources. The API uses a feature called "back-pressure", a buffering
technique that slows down the producers if the consumers cannot keep up.
Back-pressure is a core characteristic of the "Reactive streams" initiative,
a standard for asynchronous stream processing with non-blocking back
pressure 2.

Akka streams API and Reactive streams. Akka Streams API is decoupled
from the Reactive Streams interface specifications. Reactive streams
primary purpose is to provide interfaces that allow different streaming
implementations to interoperate and mechanisms to move data across
asynchronous boundaries without losses, buffering, or resource exhaustion
[22]. In contrast, Akka Streams API provides an end-user API that allows
the transformation of data streams by implementing the above-mentioned
Reactive Streams interfaces.

2.7 JGraphT

Over the last few decades, a wealth of large-scale societal, economic
network data has been collected and been available to different actors. At
the same time, the emergence of graph-theoretical problems in the fields
of network security, computational biology, chemistry, logistics, among
others, has been observed. Thus, there has been an increased interest in
mathematical graph analytical solutions that efficiently allow modeling,
analysis, and querying of large graphs. JgraphtT is a programming library
that does just that. The library is written in Java and consists of highly
efficient and generic graph data structures and algorithms implemented to
provide stability and performance while working with large-scale graphs.

2Reactive Streams https://www.reactive-streams.org/

17

https://www.reactive-streams.org/

«interface»
Graph<V,E>

Algorithms

DjikstrasShortestPath
PrimMST
...

AbstractGraph<V,E>

AbstractBaseGraph<V,E>

«interface»
Specifics<V,E>

DirectedSpecifics<V,E> UndirectedSpecifics<V,E>

Extends«interface»
GraphType

«interface»
IntrusicveEdgeSpecifics

Views

AsSubgraph
AsUnmodifiableGraph
AsUndirectedGraphs
...

Standard Graphs

SimpleGraph
PseudoGraph
MultiGraph
...

Extends

Extends

1

Figure 2.5: JGraphT class diagram that shows the core structure of the
library [26].

One of JgraphT’s distinguishing features is that it allows users to use
custom objects as vertices and edges of a graph. The generic design
and versatility it provides make it easy to represent standard real-world
networks, such as social networks. Figure 2.5 shows the overall design
of the JgraphT library. The Graph<V, E> interface is central to the library
and provides the necessary operations for construction and accessing the
elements of the graph. The interface receives two generic parameters
<V> and <E>, which can be any Java object, used as the vertices and
edges of the graph. A simple use case is "CampingSite" objects, where
each object contains information about the capacity and amenities of a
particular spot, used as vertices of a graph. Similarly, creating "Trail"
objects containing information about the route between two campsites,
such as trail type, length, trail condition, and other applicable properties,
adds to the versatility of the resulting graph. The library’s ability to
model any combination of objects as vertices and edges allows users to
express any relationship in a graph, increasing the versatility and making
its application endless.

Furthermore, the library is designed such that all interactions with the
graph happen only through the Graph<V, E> interface, thus providing
a standard interface. All predefined classes implement the interface,
and the graph algorithms included in JgraphT expect an instance of
Graph to work. Commonly used graph types such as simple, multi,

18

and pseudographs, where each graph can be undirected or directed and
weighted or unweighted, are included in the library for quick setup and
use. JgraphT also allows users to construct graphs using builder pattern
functionality, by which the library automatically chooses the most suitable
graph implementation from the user’s requirements.

Moreover, JgraphT provides built-in algorithms that can be run on
the graph. The library contains algorithms for various problems such
as connectivity, least common ancestor, cycles, shortest paths, node
centrality, spanning trees and spanners, recognizing graphs, matchings,
cuts and flows, isomorphism, coloring, cliques, vertex cover, and tours.
Furthermore, it comes with multiple graph generators, has the capability
to import and export graphs.

Thus, JgraphT is used in several commercial and scientific projects, one
notable example being Apache Cassandra [michail_jgraphtx2014java_2020].

2.8 Gephi

Gephi is an open-source software developed to provide interactive graph
exploration and network analysis capabilities to its users. These capabili-
ties facilitate the perceptual abilities of its users to identify peculiar network
features and improve the overall exploratory process by providing a com-
prehensive visual and tuneable toolbox. In order to achieve these goals, the
maintainers of Gephi, therefore, developed the software in separate, inter-
operable modules, with extensibility in mind. Furthermore, the software
has custom plugin support, allowing anyone to write custom filters and
layouts.

The user interface (UI) is designed around the real-time graph visualiza-
tion module while the exploration modules such as the layout algorithms,
data-filtering, annotation, clustering, and statistics surround it. The layout
took inspiration from editors like Adobe Photoshop, making it familiar to
new users, as illustrated in Figure 2.6.

The visualization module in Gephi uses a custom 3D rendering engine to
render networks in real-time and provides real-time data-filtering, layout
algorithms, clustering, and more. The 3D renderer uses the graphics card
to render the graphs, allowing the CPU to handle other computational
tasks such as layout algorithms and handling multiple Gephi projects
simultaneously. In addition, Gephi also has extensive functionality for
exporting graphs in different formats and customization of how the nodes,
edges, and labels should be colored and sized.

Finally, Gephi’s support for handling dynamic networks, where the
nodes and edges appear and disappear through time or change properties,

19

Figure 2.6: Gephi user interface. In the center of the UI is the graph.
Currently, it shows a sample subreddit graph, where the nodes are colored
based on their modularity class. The toolbar on the left holds the
configurations for the graph appearance and the layout algorithms. The
right toolbar shows the graph context and the panels to filter the graph and
execute statistics.

is an essential and valuable feature. This feature allows network propaga-
tion, where new actors and relationships appear, to be visualized or, in the
case of a diffusion model, see how a rumor spreads across time [3].

2.9 Gradle

Modern-day software builds requirements exceed the much simpler
compiling and packaging requirements of the past. Today’s projects require
tools that incorporate multiple languages, various software stacks, and the
capacity to apply a range of testing strategies, and at the same time, support
early and frequent delivery of code into test and production environments
[28].

Gradle is JVM native build tool that has these capabilities and resembles
established tools like Maven and Ant. Gradle follows a build-by-
convention approach and allows declaratively modeling the problem
domain using a domain-specific language (DSL) implemented in Groovy.
Gradle is Java Virtual Machine (JVM) native, allowing one to write custom
build logic in either Java or Groovy. Gradle also includes a highly
configurable dependency management tool, allowing artifacts downloads

20

from remote repositories. The dependency management is not restricted
to external sources; it supports the definition and organization of multi-
project build and modeling dependencies between projects [14].

Google uses Gradle as Android’s build tool since its design and model
allow extensibility and support for native C/C++ development and
expansion to other ecosystems. Gradle also performs twice as fast as
Maven in most build scenarios and has received consistent support from
IDEs, which has greatly improved usability and adaption [14].

2.10 sbt

sbt is an open-source build tool created for Scala and Java projects. It is
the build tool of choice for over 90 % of Scala developers as of 2019 [41].
Some of the main features of sbt are native support for compiling Scala
code, continuous compilation, testing, and deployment, support for mixed
Java/Scala projects, dependency management, and others. Other Scala-
specific abilities that sbt has, which are among the main reasons for its
wide adoption, is that sbt allows users to cross-build their project against
multiple Scala versions, incremental compilation, and the interactive
shell. Similar to Gradle, sbt has support for DSL used by writing build
description files in Scala [42].

2.11 Named Pipes

Standard pipes are a mechanism for Inter-process communication (IPC).
The output of a process/program can be "piped" as an input of another to
chain the processing; these pipes live temporarily in the kernel [23].

FIFO stands for first-in-first-out and is a queuing technique where the
oldest queued item or job is processed first. Unix named pipes, also known
as FIFO, use this concept to create files in secondary storage. Named pipes
contents reside inside the main memory and are not saved to the disk. For
the contents of a named pipe to be passed/processed, both the input and
output end needs to be in use. This capability allows named pipes to be
used in ways that standard files would not be efficient [16]. Named pipes
also require surprisingly little resources for writing to them.

2.12 Experimental Infrastructure for Exploration of
Exascale Computing (eX³)

The exponential and ever-increasing need for computing power for
scientific and commercial interests have sparked research and development
of technologies capable of performing billion billion (1018), also know
as exascale, floating-point operations per second. The high-performance

21

computing (HPC) machines of the future will consist of sophisticated,
heterogeneous, tailored processing nodes of large scale, with deep memory
hierarchies and complex infrastructural topologies each targeted, for
example, a specific set of algorithms or machine learning techniques [27].

One such example is the eX³ project, a collaborative effort between Sim-
ula Research Laboratory and their partners to further the national resource
and prepare researchers for exascale computing in Norway. The ex3 infras-
tructure is not an exascale computer but allows researchers to experiment
with upcoming hardware and software-based HPC technologies [27].

Users of eX³ can choose to develop for and use different processing
nodes, each consisting of processors from various manufacturers with
either x86 or ARM architectures, and set them up with primary and
secondary storages in unique configurations. A specific example from the
eX³ cluster is the AMD EPYC nodes configured as dual processors with
2 TB DDR4 main memory and 2.8TB local NVMe scratch storage. Other
nodes, namely the Intel Xeon and ARM-based Cavium Thunder X2, are
similarly configured with varying local memory solutions. In addition to
local secondary storage hardware, all nodes in the cluster have access to a
500TB NetApp Enterprise hybrid, i.e., combined HDDs and SSDs, storage
unit set up through the BeeGFS parallel file system. This storage is intended
as a temporary place to collect results from large-scale experiments and
simulations [40].

Numerous ongoing projects using the eX³ cluster and multiple journals
and papers published amplify the usefulness and benefit to future research
of the project [32].

2.13 Related work

Baumgartner et al. [4] describe in their article “The Pushshift Reddit
Dataset” how they overcame technical barriers to collect and archive
social media data from Reddit and what Data and APIs they provide for
researchers.

Holec and Mack [19] discuss “How new scholars navigate research
on digital platforms while remaining grounded in traditional disciplines”
based on two cases on the Reddit platform.

Tsugawa and Niida [47] conclude that several social network features
have significant effects on the survival of communities. The social network
features they investigated do not have a substantial influence on the growth
rate.

Singer et al. [45] show how Reddit has grown and changed over time,
based on an earlier version of the Pushshift Reddit dataset.

22

Part II

The project

23

Chapter 3

Approach

The approach discusses the concept of how to build a graph between
subreddits on Reddit.

Constructing graphs with the size of Reddit is a challenge - The most
obvious reason why is because of the sheer size of the dataset (over
900 GB compressed). There are constraints in the available compute
resources like CPUs, Memory, and Storage. Then there is the data structure.
Reddit subreddits are independent topics. The dataset does not directly
indicate which subreddits are in relation to each other. A method of
identifying relationships between subreddits is required. However, just
building a graph would result in a huge graph, which most likely hides the
information we actually want to look at. So a method to weigh and filter
relationships between subreddits needs to be developed. A fundamental
challenge of building a comprehensive graph is to find a edge weighting
function that promises comprehensive results.

In order to tackle this task, the problems can be broken down into
manageable size steps. The results of each step can be directly piped into
one run, but to cut down on compute time, they also shall be saved to reuse.

Overall the processing pipeline can be divided into three stages and
programs, as illustrated in Figure 3.1. One to read and transform the
dataset and make it reusable for graph building and other projects. Another
one to create the graph, work with it—furthermore, the last one for
analyzing the graph and experiments.

In the first stage , a method to efficiently read the dataset needs to be
developed in order then to determine the top n subreddits. Knowing the
top n subreddit makes it possible to create subsets of the dataset containing
those subreddits. This will limit the number of subreddits and, therefore,
reduce the complexity and memory usage. This is ok because subreddits
with just a few contributors will not tell much about the overall structure
of Reddit. The focus is set on the top 10k subreddits. The CSV results will
be written to named pipes or zstandard compressed archives. To perform
experiments over time, yearly subsets will be created using the same steps
but filtered by each year.

25

Pipeline JGraphT Python Gephi

- Pre-processing
 top-n subreddits

- Build subsets

- Read in graph datastructure

- user + subreddit map

- user x subreddit combine to graph

- Analysis

- Experiments

- Visualization

Figure 3.1: Illustrates the necessary steps to generate the graph from the
dataset. The fist step is to use the Reddit Dataset Stream Pipeline on the
left for reading, prepossessing and filtering. The second step to build the
graphs with JGraphT and calculate the scores. With those graphs we can
perform further experiments and build visualizations in step 3.

In the second stage , the actual graph data structure is built from the
"subreddit, user" CSV. The first step is to read the CSV and create a distinct
list of subreddits for each user. We can then combine all possible distinct
combinations of subreddits to create an edge between them from that list.
Adding each of these edges to the graph distinctively creates the simplest
form of the graph structure. It depicts only which subreddits are in relation
to each other. The next step is to extend this implementation to create
a simple edge weight by counting users that posted in both subreddits.
Furthermore, precalculate common scores like degree, degree-degree, and
the local clustering coefficient in a reasonable time. From there, the weight
needs to be improved, to take neighbors into account. Furthermore,
functionality to export and import graphs in a universal format needs to
be implemented.

The third stage focuses on working with the graph. With the edge
lists, experiments such as ovserving distributions can be performed.
Furthermore, a way to visualize the graph is another challenge. To
visualize the graph visually and performant, the data structure has to be
reduced from a highly connected graph to the essential edges only.

3.1 Understanding the Pushshift Reddit Dataset

Pushshift is a data collection service for Reddit and other social media sites
that makes data available to researchers. They provide an API to query the
dataset as well as a downloadable archive used in this thesis.

The dataset is split up into two entities/subsets - submissions and
comments. Each of these datasets contains

• NDJSON (one JSON object per line)

• Compressed using xz, BZ2, ZSTD (Google names)

26

• Dataset is split into monthly archives, on submission, and one
comment file per month.

• Only using data from 2005-2019.

Submissions The submissions dataset contains one JSON object per
submission/post that has been made on Reddit. Table 3.1 lists the fields
the submissions dataset provides. The most interesting fields to create the
graph are the subreddit and the author. These are the only fields required
to identify which user posted in which subreddit since the author field
contains a unique user name and the subreddit names are unique.

Field Description
id The submission’s identifier, e.g., “5lcgjh” (String).
url The URL that the submission is posting. This is the same with the permalink in cases where the submission is a self post. E.g., “https://www.reddit.com/r/AskReddit/
permalink Relative URL of the permanent link that points to this specific submission, e.g., “/r/AskReddit/comments/5lcgj9/what did you think of the ending of rogue one/” (String).
author The account name of the poster, e.g., “example username” (String).
created_utc UNIX timestamp referring to the time of the submission’s creation, e.g., 1483228803 (Integer).
subreddit Name of the subreddit that the submission is posted. Note that it excludes the prefix /r/. E.g., ’AskReddit’ (String).
subreddit_id The identifier of the subreddit, e.g., “t5 2qh1i” (String).
selftext The text that is associated with the submission (String).
title The title that is associated with the submission, e.g., “What did you think of the ending of Rogue One?” (String).
num_comments The number of comments associated with this submission, e.g., 7 (Integer).
score The score that the submission has accumulated. The score is the number of upvotes minus the number of downvotes. E.g., 5 (Integer). NB: Reddit fuzzes the real score to prevent spam bots.
is_self Flag that indicates whether the submission is a self post, e.g., true (Boolean).
over_18 Flag that indicates whether the submission is Not-Safe-For-Work, e.g., false (Boolean).
distinguished Flag to determine whether the submission is posted by moderators or admins. “null” means not distinguished (String).
edited Indicates whether the submission has been edited. Either a number indicating the UNIX timestamp that the submission was edited at, “false” otherwise.
domain The domain of the submission, e.g., self.AskReddit (String).
stickied Flag indicating whether the submission is set as sticky in the subreddit, e.g., false (Boolean). locked Flag indicating whether the submission is currently closed to new comments, e.g., false (Boolean).
quarantine Flag indicating whether the community is quarantine, e.g., false (Boolean).
hidden_score Flag indicating if the submission’s score is hidden, e.g., false (Boolean).
retrieved_on UNIX timestamp referring to the time we crawled the submission, e.g., 1483228803 (Integer).
author_flair_css_class The CSS class of the author’s flair. This field is specific to subreddit (String).
author_flair_text The text of the author’s flair. This field is specific to subreddit (String).

Table 3.1: Pushshift submissions dataset description. Copied from the
paper The Pushshift Reddit Dataset [4].

Comments The comments object contains one JSON object per comment
that has been made on Reddit. It can be a comment directly to a submission
or a comment in reply to another comment. Table 3.2 lists the fields the
comments dataset provides. The most interesting fields to create the graph
are the subreddit and the author. As in the submissions dataset, those two
fields contain unique names.

[4]

27

Field Description
id The comment’s identifier, e.g., “dbumnq8” (String).
author The account name of the poster, e.g., “example username” (String).
link_id Identifier of the submission that this comment is in, e.g., “t3 5l954r” (String).
parent_id Identifier of the parent of this comment, might be the identifier of the submission if it is top-level comment or the identifier of another comment, e.g., “t1 dbu5bpp” (String).
created_utc UNIX timestamp that refers to the time of the submission’s creation, e.g., 1483228803 (Integer).
subreddit Name of the subreddit that the comment is posted. Note that it excludes the prefix /r/. E.g., ’AskReddit’ (String).
subreddit_id The identifier of the subreddit where the comment is posted, e.g., “t5 2qh1i” (String).
body The comment’s text, e.g., “This is an example comment” (String).
score The score of the comment. The score is the number of upvotes minus the number of downvotes. Note
that Reddit fuzzes the real score to prevent spam bots. E.g., 5 (Integer).
distinguished Flag to determine whether the comment is made by the moderators or admins. “null” means not distinguished (String).
edited Flag indicating if the comment has been edited. Either the UNIX timestamp that the comment was edited at, or “false”.
stickied Flag indicating whether the submission is set as sticky in the subreddit, e.g., false (Boolean).
retrieved_on UNIX timestamp that refers to the time that we crawled the comment, e.g., 1483228803 (Integer).
gilded The number of times this comment received Reddit gold, e.g., 0 (Integer).
controversiality Number that indicates whether the comment is controversial, e.g., 0 (Integer).
author_flair_css_class The CSS class of the author’s flair. This field is specific to subreddit (String).
author_flair_text The text of the author’s flair. This field is specific to subreddit (String).

Table 3.2: Pushshift comments dataset description. Copied from the paper
The Pushshift Reddit Dataset [4].

Size The compressed size of the dataset is currently around 900 GB
including parts of 2020. We are using using data from 2005-2019.

3.2 Reddit Dataset Stream Pipeline

The Reddit Dataset Stream Pipeline is proposed as a program to read, filter
and transform the Reddit dataset in parallel. The shall be able to provide a
stream for other programs that use the data provided. The pipelin shall be
created with keeping the possiblity of live streaming data in mind.

Challages the dataset brings. Dataset is large, just unpacking it single-
threaded takes time, and reading it multiple times also takes time. Storing
it uncompressed takes space, and in some cases, longer to read depending
on whether the Bottleneck lies with IO or CPU time.

We therfore consider the following features as neccessary:

• Process the dataset in parallel

• Create intermediate results

• Make sure to only read the dataset it once per iteration

Idea The idea is to create a program that can perform the reading and
provide access to the dataset via UNIX named pipes. Also, it sthall
restrict the information flow to a minimum, by A: only providing the fields

28

Figure 3.2: Architecture concept overview of the Reddit dataset stream
pipeline.

required. B: Filtering deleted users for the graph creation because it is
impossible to know if one post was made by the same deleted user or
different deleted users. The dataset just contains the string

[deleted]. We should C: Create a possibility only to filter the
top n subreddits. To solve this we propose to create a stream
processing system, so it would be possible to process live data
with it in the future. We propose the use of Akka streams to
utilize features such as backpressure and parallel execution and
to extract the dataset as fast as needed by the client for now.
The result stream shall be made available for other programs
by using files or named pipes.

Concept The program shall read the files in parallel and
merge the results. The order does not matter four our cases, and
therfore there is no need to preserve it. We suggest to read the
comments before the submissions because the files are larger,
and we estimate to get a better CPU core usage by doing so.

The implementation shall filters lines that contain a corrupted
JSON object from the result stream. As well as lines that only
contain null bytes.

29

Proposed features Commandline interface with a few set-
tings:

• dynamically specifies the location of the dataset

• Filter for files that contain a specific string. This is used to,
e.g., select just the dataset for the year 2012 by passing the
--filter 2012 to the program.

• Exclude files that contain a specific string. To, e.g., exclude
2020, the parameter --exclude 2020 can be passed to the
program.

• Compress option to compress the output using ZSTD. This
can be helpful to reduce the amount of data written to disk
for larger datasets.

3.2.1 Statistics mode

The statistics module shall be used to gather basic metrics about
the whole dataset or subsets of it. Currently, two different
experiments have been implemented.

Number of user contributions in subreddit experiments. We
propose to create the User contributions in subreddit experi-
ments. It shall be a experiment to count the number of con-
tributions users made in subreddits. A contribution is a post
or comment. To parallelize reading and counting the contribu-
tions, the program shall maintain an intermediate contribution
per subreddit count for each file in a hashmap[subreddit, count].
Once the file is completely read, the hash map is passed to a
merge step that aggregates all the intermediate counts into one
big hashmap. Once all files are read, this hashmap is then con-
verted to CSV and written to disk.

Number of users per subreddit. An Experiment to count
the users that made at least one contribution in a subred-
dit. A contribution is a post or comment. Like in the con-
tributions per subreddit, to parallelize the counting of the
users, the program shall maintain an intermediate subred-
dit hashmap per file. The hashmap holds an inner hashmap
per subreddit used to list the users that contributed to the
subreddit and the number of contributions for each user.
hashmap[subreddit, hashmap[user, count]] Once a file is com-
pletely read, the hash map is converted to a simpler map that
contains the subreddit and the number of distinct users and
passed to the merge step. hashmap[subreddit, count] The merge
step then aggregates all the intermediate counts into one big

30

hashmap. Once all files are read, this hashmap is then con-
verted to CSV and written to disk.

The number of users per subreddit implementation shall filter-
filters lines where the author is not set or has been deleted. Since
posts of deleted users are not distinguishable, because the user-
name is "deleted" they are ignored. If they were not ignored,
the count of every subreddit with 1 − n deleted comments or
submissions would be increased by one. This means small sub-
reddits with only one deleted post would get a proportionally
higher count than large subreddits with many deleted posts.

3.2.2 Passtrough mode

This mode shall read the dataset files and provide them as
a single output stream, therefore passes them through. The
main use case is to make the dataset easier readable by third-
party tools. Therefore it can break down the large dataset to
a single CSV stream without writing it to disk and utilizing
multithreading for extraction. Initially, it was intended to use it
via Unix Named Pipes and read the data from another program,
e.g., Python and Pandas. Nevertheless, it shall also be possible
to write the file to disk - e.g., with the compression option
enabled to save disk space.

It shall hande two streams if requested. One for comments
one for submissions. Possible to return two streams at the same
time. The number of parallel read files is split between the two
streams.

There shall be multiple multiple ways the result stream can
be returned.

1. User in Subreddit CSV with he flag --only-user-in-sr. A
simple line with "subreddit,author" is written to the output
for every comment and submission. That format is the
format used to create the graphs because submissions and
comments are treated equally.

2. Submission and Comment CSV. Default - without any
flags. The fields "subreddit,id,author,title" are passed to
the CSV stream for the submissions. The comments stream
provides the fields "subreddit,id,author,body" . The fields
can be extended when necessary by extending the data
structures in the scala code.

3. Original JSON. Using the flag --keep-original-json the
original JSON format is passed to the output stream, and

31

the program mostly acts as a filter and simplified way to
read the files as one single file.

The implementation needs to filters lines where the author
is not set or has been deleted. The reason deleted authors
shall be filtered is that they would falsify the resulting graphs.
Since the graphs will be built on "which user contributed in
which subreddit", all the posts for deleted users would be seen
as one user with the name "[deleted]", which is connected to
many subreddits. That could create edges between subreddits
that would otherwise have no connection at all. The impact
for smaller subreddits would be higher because, with one
deleted post, they suddenly would be connected to many more
subreddits.

3.2.3 Streams Flow Implementation

For each mode we propose a seperate flow, since the implemen-
tation is differen. To parallelize reading and counting the con-
tributions, the program shall use a stateful map-concat within
the flow for each file. For the pass trough this is not neccessary.
Though shared logic like reading the dataset shall be used by
both flows.

3.2.4 Steps to get the data ready for the graph stage

In order to build the Graph, a list for every comment and
submission a user made into a subreddit is needed. For example
a CSV in the form of subreddit,author. The goal is to create a
graph from that list, considering limited RAM, CPU time, and
storage. Considering these limits, we take only up to 10.000
Subreddits to build the graph and strip all unnecessary data
from the result.

1. Count the number of user contributions per subreddit. We
can utilize the Reddit Dataset Stream Pipeline statistics
mode first to count all the users per subreddit. That run
shall create a CSV file with the subreddit name and the
number of users that contributed to that subreddit. To
exclude the incomplete year 2020.

2. Filter the top n subreddits from the previously generated
subreddit,count CSV file with a python script. The script
can use Pandas to load the CSV into a data frame. Then
use the DataFrame.nlargest function to find the top n
subreddits with the highest user count. The names of
the top n subreddits shall be then written to a new-line
delimited text file.

32

3. We then create a subset of the dataset that only con-
tains submissions and comments of the top n subred-
dits. With the passthrough mode a filter parameter
--filter-by-sr <filterlist.txt> pointing to the new-
line delimited text file of subreddits to filter for, cre-
ated in the previous step. To only export the fields
required for the graph building (subreddit,author),
we can supply the option --only-user-in-sr to the
program. We exclude the incomplete year 2020 by
adding the parameter --exclude 2020. To keep the
size down, use the --compress parameter. It shall be
possible to either process both submissions and com-
ments in one run by supplying both the --comments and
--submissions parameter. It can also make sense to
split it up, for example, to run it on multiple computers
in parallel. In any case the --comment-out <file> and
--submission-out <file> parameters should be speci-
fied. Otherwise, the output is written into the execution
directory as comments.csv and submissions.csv.

In order to build the yearly graphs, yearly subsets are required.
We have to repeat the three steps per year to create those
subsets per year y = [2005 : 2019]. The Reddit Dataset Stream
Pipeline shall supports filtering for years indirectly by filtering
for filenames that contain the year. To filter the subreddits for
2014, we porpose the parameter --filter 2014. In summary
the process could look the following:

1. Find the number of user contributions for year y with the
--filter y parameter.

2. Find the top n subreddits for year y. The export user count
script includes exports for the years 2005-2019.

3. Create a subset of the dataset that only contains submis-
sions and comments of the top n subreddits for year y.

We can repeat thet process to crete the time slice

{2005 : 2019} × {Top 5, 10, 100, 1.000, 10.000}

3.3 Graph Building

The Reddit Dataset Stream Pipeline (RDSP) provides large
datasets that tell us which users posted in which subreddit. In
this section, we elaborate how the data provided by the RDSP
is used to create the graph. We discuss the evolutionary steps
that went into constructing a graph.

33

Undirected graph
without edge weight

Weighted by user
count

Weight in relation
filtered edges

Evolution of the weighting function

Figure 3.3: Evolution of the weighting function. The first stage illustrates
the simplest form of an undirected graph subreddit graph. For every user
that posted in two subreddits, an edge is created. For a situation like
the top 10000 subreddits with many more users, this usually results in a
fully connected graph since it is likely that at least one user posted in two
subreddits. Therefore this is a first step towards building the graph. In
the next step, the edges are weighted by counting the users that posted in
the two subreddits an edge connects. This provides us with a simple edge
weight that gives a first indication of which subreddits belong together.
The final weight function considers the importance of neighbors. Once we
filter out edges with low weights, we can visualize a graph that indicates
which subreddits belong together.

3.3.1 Reddit Graph tool

The goal is to develop a program that can create the graphs
from the user CSV stream the RDSP creates. Furthermore,
the program should be able to read the graphs and then later
perform experiments on them. To solve this problem, we
built a Java program that does exactly that. It is leveraging
the algorithms and data structures the JGraphT Java library
provides. The Java project is built with Gradle, so it can
be built and packaged with one command without worrying
about dependencies. Moreover, the program uses various third-
party libraries for compression/decompression, CSV handling,
creating the command line interfaces. Since the program serves
two purposes, it provides two modes that can be selected via a
command-line parameter.

Create the Graph In order to build a Graph from the
"user, subreddit" CSV, the program can be called with the
--mode CreateFromUserSubredditCsvAndExport command line
parameter. The program then reads the CSV, creates distinct

34

vertices, and builds distinct maps of subreddits each user has
contributed to. From there, it creates the degrees and calculates
scores and weights for the graph. After the graph creation is
finished, the results can be exported as edge and vertex csv files
and a dot file. The exported results include all the calculated
scores.

Load the Graph When the program is called with the
--mode LoadFromVertexEdgeList command line parameter, it
is set into the load mode. This mode creates the graph in mem-
ory, but rather than reconstructing it in from the "user, subred-
dit" CSV, it loads the graph from the vertex and edge list which
is more efficient. These lists are simple CSV files that contain
the vertices, plus the precomputed parameters such as a degree
or the weight. The program reads and deserializes these lines
into the same data structures. First, the vertices are loaded, then
the edges. The advantage of this approach is that it is faster by a
magnitude. Having the vertex and edge lists in a simple format
makes them reusable for importing them into other tools such
as a Graph database or a Dataframe in Python with Pandas or
in R.

3.3.2 Evolution of the graph creation

The Reddit Dataset Stream Pipeline provides a "user, subreddit"
CSV for the top n subreddits. This section will conceptualize
how to build a subreddit graph representing a landscape of
subreddits in multiple iterations. In order to create the graph,
the workload will be broken down into manageable smaller
workloads shown in Figure 3.3. The first challenge is to
create an undirected subreddit graph from the list of user
engagements. The next challenge is to create a simple weighting
function. The final step is to develop a more advanced
weighting function and filter edges by a threshold to study the
network of strong connections between subreddits. This base
graph can then be used for further experiments.

Unweighted graph. The Reddit Dataset Stream Pipeline pro-
vides a list of users in subreddits. The first step towards a mean-
ingful graph is creating an undirected unweighted graph from
the list of users in subreddits in Figure 3.4. Where one user post-
ing in any pair of subreddits results in an edge between those
subreddits. Whether one or n users post in those two subreddits
has no impact on the resulting graph.

35

fun, andreas

java, andreas

java, daniel

berlin, daniel

fun, haseeb

berlin, haseeb

fun java

berlin

Figure 3.4: Creating a simple unweighted graph. Given the CSV list, which
indicates which users contributed in which subreddit at the left, we can
create a simple undirected graph. Andreas posted in the subreddits fun
and java, so we can create an edge between fun and java. Daniel posted in
java and berlin, so an edge between java and berlin is created. Last haseeb
posted in fun and berlin, so we make an edge between fun and berlin. This
results in a simple graph without any edge weights taken into account yet.

fun, andreas

CSV

java, andreas

java, daniel

berlin, daniel

fun, haseeb

berlin, haseeb

fun, andreas

fun, john

Hashmap[Hashset]

andreas:[fun, java]

daniel:[java,berlin]

haseeb:[fun, berlin]

john:[fun]

Graph

fun java

berlin

Figure 3.5: From CSV to Hashmap to Graph. todo: extend description

Since the whole graph will be built with JGraphT, we create
a new graph JGraphT graph object first. We then parse the CSV
file line by line. For each subreddit, we add a vertex if it does not
exist yet. The current list contains one entry per post a user has
made. Meaning the same subreddit could be listed n times. For
the graph, a distinct list of subreddits per user is required. To
create the distinct list, a HashMap[User, HashSet[Subreddit]]
is used. If the hashmap has no entry for the current user, it
will be added, and the HashSet in that slot will be created with
the current subreddit. If now another line for the same user is
added, we add the subreddit to the HashSet. When the whole
CSV is processed, we have a distinct list of users and a distinct
list of subreddits per user, which will be the basis for creating
the graph. An example of such a hashmap can be seen in Figure
3.5.

36

A B C
A
B
C

0
1
1

0
0
1

0
0
0

{AB, AC, BC}

Figure 3.6: Unique subreddit combinations per user in matrix representa-
tion.

All unique combinations of subreddits per user have to be
determined to create the edges between subreddits a user was
active in. The exemplary matrix representation in Figure 3.6
illustrates that if a user is in the subreddits A, B, C, all possible
unique combinations would be AB, AC, BC. Formally this can
be defined as:

Let be X a set consisting of n subreddits assigned to one user.

X = X1, X2, ..., Xn

Then we define a set M consisting of all unique subreddit pairs
in X without equivalent combinations.

M = {{x, y}|x, y ∈ X, x 6= y}

The result is a set of unique subreddit pairs M, without com-
binations where subreddits would be paired with themselves,
such as (AA), (BB) and without inverse combinations (AB) =
(BA).

Programmatically this can be solved by accessing the subreddit
set by index. The following two loops illustrate how to create all
possible unique index combinations. Note that the start index
of the inner loop is dependent on the outer loop.

For i = 0 to MaxIndex
For j = i + 1 to MaxIndex

log(i, j)

Resulting combinations:
i=0, j=1
i=0, j=2
i=1, j=2

For each subreddit pair, an edge is added if it does not already
exist in the graph. It could already exist because another user
could be associated with the same two subreddits.

37

There is no parallelization in this step, as exclusive write access
would not be ensured.

Figure 3.7a illustrates an example of such a graph. In this
almost fully connected graph, all the subreddits are close to
each other. Meaning this tells us nothing other than there is
some relationship between those graphs.

Weighting by user count The next logical step to create a
graph with weights. The most simple edge weight is the
number of users that posted at least once in both subreddits
Uij. To create a graph and calculate Uij for each edge,
the previous attempt has to be modified. The vertices and
HashMap[User, HashSet[Subreddit]] can be created exactly as
in the previous step. Previously if an edge had already been
present because another user posted in both subreddits already,
the new edge was discarded. In this approach adding the edges
has to be handled differently.

The edge will get a property Uij (numberOfUsersInBothSub-
reddits). We check for each subreddit pair we got from the pre-
vious step if there is already an edge present. If there is no edge
present, we create a new edge between those two subreddits
and set Uij to one because now one user-contributed to those
two subreddits. If the edge is already present, the property Uij
is increased by one.

Weight in relation Create a weight in relation to its neighbors.
Figure 3.7c shows the graph using the ... based weight. A
clearer distinction between the groups. In this case, between
the programming section and the rest.

• Todo: explain weight

• Todo: read scale-free network, small-world network

• Todo: explain weight.

• Todo: explain why weight is better. (Not such a high range
as Uij)

• Todo: formula weight

• Todo: explain all calculated metrics

Filter Edges by threshold After filtering the edges by weight,
the resulting graph only displays connections of importance.
Many quite low edge weights. Not so many high edge weights.
If we filter out the unimportant low edge weights, we get a
graph with meaningful edges. In this state, the graph can be

38

easier rendered, and neighbors should be visible more clear
than in a fully connected graph.

Function W die jeden Touple auf eine natürliche Funktion
abbildet - und alles auf 0 setz, was unter dem Threshold liegt.

f (m) : M → R

t the threshold.

WM(m) =

{
0, weight(m) < t
weight(m), otherwise ∀m ∈ M

The result is an in-memory graph that can be used as-is
for the experiments. Achievement: Through the Weight, the
real network structure of subreddits will be visible. As an
intermediate result, it will be written to disk as edge and vertex
CSV lists to be loaded from there fast.

3.4 Supporting Tools

Some challenges are surrounding the development process that
a set of tools can solve. One problem is that many single batch
jobs need to be executed on eX³ to compute all the results.
Therefore we propose the use of SLURM to schedule batch jobs
on the eX³ cluster. Another problem, that the developed code
needs to be deployed to eX³ before we can run it. Therefore we
elaborate on the CI / Continuous Deployment (CD) system we
propose as a solution.

3.4.1 Scheduling with SLURM

SLURM is a cluster resource manager that allocates cluster
resources, provides a framework for running and monitoring
tasks on the cluster nodes. Furthermore, SLURM maintains a
queue for conflicting work [50].

In order to generate all the Reddit graphs with multiple
parameters over time, a cluster resource manager like SLURM
is essential. Manually queueing all the tasks after each other
would be tedious, and utilizing multiple nodes in a cluster
provides faster results. However, given enough time, it would
be possible to run all those scripts on one machine sequentially.
SLURM has the capability to perform array jobs, meaning one
script call can be parameterized. We use it to create the time
slices by supplying the years from 2005-2019 as an array job

39

(a) Without weights (b) User count Uij

(c) Weight
(d) Removed around 1/3 low
weights

Figure 3.7: The four stages of building the graph. Graph rendered in
Gephi using the Force Atlas 2 layout algorithm [24] with gravity set to 1
and scaling set to 50. Graph 3.7a shows the graph without weights, which
means the graph is layouted only based on the number of edges each node
has. Graph 3.7b uses the user count Uij as a weight, which results in a graph
that gets pulled close together. Graph 3.7c depicts the same graph with the
custom weight function. The groups of nodes are more distinct than in the
previous graph. Graph 3.7d shows the graph with the custom weights, but
around 1/3 of the edges with low edge weights are filtered due to their low
importance.

40

parameter. Instead of creating 15 individual tasks, SLURM
groups those tasks together as one array job. Nevertheless,
the individual runs can still be split over multiple nodes.
We also generate multiple graph graphs for the top n =
5, 10, 100, 1000, 10000 subreddits by the number of contributing
unique users. For the yearly graphs alone, 75 individual runs
are required per step of the process.

To store the dataset and the generated results, we will use the
500 TB BeeGFS storage that is mounted in most of the eX³ nodes.
BeeGFS is a network filesystem as well as a parallel file system
[15]. Furthermore, the results are synchronized with Google
Drive to make them accessible locally.

3.4.2 CI builds, tests, and automatic updates

Dealing with such a vast dataset requires testing the codebase
frequently on a larger machine than the local desktop. There-
fore it has to be frequently deployed to eX³. Since there is no
sbt installed to compile the scala code on the machine directly,
and copying the Java Archives (JARs) manually is a tedious pro-
cess, the deployment process is using CI/CD. In general, CI is
a good practice that helps to keep the code in a compilable state
and helps to notice bugs early in the process [13]. Therfore we
propose the following CI workflow, which is also illustrated in
Figure 3.8:

Azure BlobLocal

Develop
features

Push to Github

Github

Run CI

YesCI passed merge to
master

Run CI Push to Azure
Blob Store

eX³

Download
update

Update local
files and links

No

Figure 3.8: CI stages. The application is developed locally. Once a new
feature is ready, it is then pushed into a feature branch on Github. On
Github, the CI Build verifies that the code is compilable and tests pass.
If the CI build passes, the code can be merged to the master branch.
From there, the automatic CI Build is started again, but this time the
generated package is uploaded to an Azure Blob Store. From there, it can
be downloaded to eX³ by the update script, which extracts and overwrites
the old version with the new one.

41

1. We develop features in a feature branch and commit them
to the git repository. Push the changes to Github.

2. Once the feature is done, we create a pull request to
merge the feature into the master branch. The CI Build
automatically restores dependencies, compiles the code,
and executes unit tests to ensure the code is working. If the
CI Build fails, the code cannot be merged. This mechanism
ensures that the code merged into the master branch can be
compiled at all times and that tested logic is not broken.

3. We merge the feature branch into the master branch and
close the pull request.

4. Github actions build is triggered automatically for the
master branch. Now the CI Build again automatically
restores the dependencies, compiles the code, and executes
unit tests. Other than in the feature branch build, the
code is packaged and uploaded to an Azure Blob store
where it can be downloaded as well. Finally, the build
automatically creates a pre-release on the Github page.

5. On eX³, the software now can be updated to the latest
version via a simple shell script that downloads the
program from the Azure Blob Store. To update the
program, it automatically extracts the zip file and replaces
the old software with the new version. It also creates
soft links and wrappers to use the script via the rdsp
and rgraph command, without the need of manually
supplying commands to the Java Runtime Environment
(JRE). We chose not to automatically update the software
because it would interfere with experiments that are still
running.

The process will be the same for the Reddit Dataset Stream
Pipeline (RDSP) as well as the graph building tool. The only
difference is, that the RDSP is built and tested using sbt, and
the graph building tool is built and tested using Gradle.

42

Chapter 4

Implementation

In this chapter, we illustrate how the Reddit Dataset Stream
Pipeline (RDSP) and the Reddit Graph tool are implemented.
We present every step of the programs and explain essential
design decisions. Furthermore, we discuss how to use the
programs.

4.1 Reddit Dataset Stream Pipeline

The idea behind the Reddit Dataset Stream Pipeline (RDSP)
is to create a program that could provide the dataset as a
stream for other programs via UNIX named pipes. The RDSP
has been implemented using Akka Streams. We chose Akka
streams because it implements the Reactive Streams standard
[23]. Furthermore it is extensible and provides connectors for
systems like Apache Kafka and seems therefore like a promising
solution for processing the dataset now and in the future.

4.1.1 Command-line interface

The Reddit Dataset Stream Pipeline comes with a command-
line interface that is implemented using the scopt command-
line options parsing library [44]. Scopt provides a functional
description language that can be used to describe all possible
parameters. The parsed command-line arguments are written
to a case class. Scopt supports arguments, options, and com-
mands. It can specify rules for input validation. Furthermore, it
can automatically generate a help text from the specification. If
we call the program using the --help option, it prints formatted
text output of all the possible options to the command line.

43

Figure 4.1: Caption

In summary, the command line interface of the RDSP pro-
vides basic settings for all commands: Dataset directory, con-
currency settings, file inclusion, exclusion filters, and an option
to compress the output. Then the user has to choose if the mode
shall be run in statistics mode (documented in Section 4.1.5) or
passthrough mode (documented in Section 4.1.4)

Statistics arguments. After the statistics mode is selected, the
user has to specify an experiment as well. Currently, the
experiments to count users and user contributions in subreddits
are implemented. Since the program labels the experiments, the
user can only specify a file suffix and an output directory.

Pass-through arguments. For the passthrough mode, the user
can select if the submissions, comments, and/or author dataset
shall be passed through. For the passthrough mode, there is
the option to filter the dataset by a list of subreddits provided
in a newline delimited text file. There is an option to count
the elements in the stream if desired. The user can optionally
specify the output files for each dataset individually. The user
can also select if the original JavaScript Object Notation (JSON)
objects are written to the output instead of the CSV.

4.1.2 System setup

Except for the command line parsing, the whole program runs
in one Akka ActorSystem. The Actor System is initialized at the

44

beginning of the program. In the default configuration Akka
only utilizes only 64 threads. This resulted in low performance
on our test system.

The AMD EPYC nodes on eX³ are equipped with dual AMD
EPYC 7601 processors with 32-cores and therefore 128 total
threads and 2 TB DDR4 main memory. The ARM CAVIUM
nodes come with dual ARM Cavium ThunderX2 CN9980
processors with 32-cores and 256 total threads, and 1 TB DDR4
main memory [40].

In order for Akka to take full advantage of all CPUs on these
larger eX³ nodes, we have to adjust the maximum thread count
in the configuration. Currently, the maximum thread count
in the fork-join-executor is set to 1024. Moreover, the thread
pool size for the blocking io is set to 128. With the adjusted
settings, Akka can utilize all the 256 CPU threads. Figure
4.2 shows the resource usage after the thread count has been
adjusted using htop on one of the eX³ nodes with 256 threads
and 1 TB DDR4 main memory. Using all the available threads
results in much faster program execution. The CPU usage was
documented during the "Count users in subreddits" processing
at the beginning of the run. In the end, fewer cores are used
because the stateful map concat takes one intermediate result
per file.

4.1.3 Akka streams architecture

For both the statistics mode and the passthrough mode, the
architecture for processing the dataset is similar. The processing
time for every element in the stream is low, but billions of
entries are in the dataset. A fundamental design decision was
not to distribute the sequential operations on the stream among
multiple actors since this would result in extensive message
passing and consequently low performance.

Figure 4.3a illustrates the abstract dataflow graph of how the
processing is organized. Based on the command line config,
we create a Source that emits all file names that make up the
dataset. The dataset is organized in one submission file and
one comment file per month. This source is connected to a
flat map merge operator. The flat map merge operator creates
a new Source of output elements for every input element. It
is then flattened into the output stream by merging, meaning
the original order is not preserved. The maximum breadth of

45

Figure 4.2: CPU usage in htop on 256 threads on two ThunderX2 CN9980
- Cavium 32 core ARM processors. Most of the 256 threads show a more
than 90 % usage. We documented the CPU usage during the "count users
in subreddits" processing at the beginning of the run.

substreams to be consumed at any given time has to be defined
[12].

The flat map merge executes n substreams in parallel. By
default, the number of parallel processed files is set to match the
number of CPU threads on the machine. The data flow diagram
in Figure 4.3b, illustrates the parallel execution within the flat
map merge.

Within the flat map merge, we create a Source from a
decompression stream for the provided filename. The dataset
contains XZ, bzip2, and Zstandard compressed archives. The

46

Files Source Merge File Sink

Flat Map Merge

File Stream Source Work

(a) Flow implementation

Files Source File Stream Source 2

File Stream Source 1

File Stream Source n

Work 2

Work 1

Work n

Merge File Sink

(b) Data flow

Figure 4.3: Graph 4.3a shows the concept of how the Akka Streams Graph
is built. More text describing the graph. The Data flow diagram 4.3b
illustrates how Akka Streams parallelize the defined graph. More text
describing the process.

type Source is therefore created dynamically, based on the type
of archive. This is done via Apache Commons Compress, which
has built-in compression streams for bzip2 and wraps the third-
party libraries for Zstandard and XZ [6]. In order to create the
Source, we create a Java Compressor Input Stream that takes
care of the decompression. We then use the Akkas Stream
Converters to wrap the Java Stream into a Source.

After the source, there is the actual work step, which operates
on the Byte String stream we get from each step. This varies
from stage to stage.

The modified result stream is merged into one stream,
without consideration of the order. After the merge, there is
the possibility of executing operations that require operating on
one stream. Nevertheless, most notably, the aggregated results
are written into one Sink. For the Sink, there is the option to use
a Sink that compresses the output with ZStandard.

4.1.4 Pass-through mode

The pass-through mode was created to easily make the whole
dataset available as a stream for other programs via UNIX
named pipes. With the pass-through mode, it is possible to pass
the whole dataset as one stream to another program that works

47

on the dataset. The Reddit dataset is decompressed on the fly
and uses all available CPU cores to do that efficiently.

The pass-through only emits only small subsets of the fields
as CSV, but there is the option to emit the original NDJSON.
Further, the pass-through mode implements filters to filter only
for certain subreddits and to ignore deleted authors. A list
of subreddit names to include in the output stream can be
provided as a new-line delimited text file. Apart from filtered
rows, the pass-through mode emits the entities in the dataset
without any further aggregation.

For the pass-trough, the user can select which entities
(submissions, comments, authors) shall be processed. If the
user selects multiple entities, the multiple streams are started in
the Actor System. The but parallelization of the flat map merge
through the number of streams.

Source. Figure 4.4a shows the architecture of such a flow.
First, a source that emits all the files that shall be processed. The
files are filtered only to include those that match the processed
entity (submissions, comments, authors). Further, the function
to create the source consideres optional exclusion and inclusion
filters for the file names. With those filters, it is possible to
include or exclude all files that contain a certain string, for
example, a year.

Flat map merge. The file is passed into the flat map merge,
where the compressor input stream source is created. The
source emits a steam of unstructured byte chunks and can span
over multiple lines or less than one line. To create messages of
whole entities to pass on, the stream is framed into a stream of
bytes that belong into one line by looking for the new line byte
sequence.
These lines of bytes contain one JSON object each. Therefore the
next step is to deserialize the JSON into the corresponding case
class with spray-json [46].
Since now objects are passed along the stream, we can operate
on them. First, we filter deleted users since we cannot use
those for graph building. Then we optionally filter only to let
entities pass further onto the stream associated with subreddits
specified in the filter list.
The last step within the flat map merge is to convert every entity
to CSV.
We did not include any async boundaries within the flat map

48

Files Source

Merge

File Sink
or

Compressor
Sink

Flat Map Merge

File Stream Source Split lines

deserialize JSON filter deleted
authors

filter subreddits to CSV

File
Name

Stream CSV
Stream

(a) Flow implementation of pass-troguh

Files Source

File Stream Source 1

Merge

File Sink

File Stream Source 2

Split lines 1

deserialize JSON 1

filter deleted authors 1

filter subreddits 1

to CSV 1

Split lines 2

deserialize JSON 2

filter deleted authors 2

filter subreddits 2

to CSV 2

(b) Data flow

Figure 4.4: Graph 4.4a shows More text describing the graph. The Data
flow diagram 4.4b illustrates, how . More text describing the process.

49

merge that would split the subsequent operations onto multiple
actors since we are already utilizing all the available CPU
threads by streaming many files in parallel. Async boundaries
introduce in this context unnecessary overhead due to message
passing.

Sink. The steam that leaves the flat map merge flow is a
stream that contains all the processed CSV byte strings from
all dataset files. Depending on the settings, this CSV stream
flows in one of two possible Sinks. Either into an IO Sink that
writes the bytes directly to a file or a unix! (unix!) named
pipe. Alternatively, into a Sink that compresses the stream with
ZStandard before writing it to a file.

Data flow. Figrue 4.4b illustrates how the stream is processed
in a data flow diagram. Every step within the flat map merge is
split onto n actors, and therefore most of the processing is done
in parallel. The stream is only merged to write it into a single
Sink.

4.1.5 Statistics mode

Since we have to limit the graph size, the statistics mode was
created to determine which subreddits are important. The
statistics mode currently implements two methods of counting
the size of subreddits. One method is to count the total number
of user contributions per subreddit. The other to count the
number of users that contributed at least once to that subreddit.
When creating the "subreddit, user" CSV with the pass-through
command, we can use a list of top n subreddits to shrink down
the dataset. This list is created from the results of the statistics
mode. Therefore the statistics mode acts as a preprocessing step
for the pass-through.

The statistics mode reads the whole dataset and creates a
CSV list of all subreddits and out the number of users or
contributions in that subreddit. While reading the data, the
submissions and the comments dataset are combined since we
only use the subreddit name and the author name of every
entity to create the list. Compared to the pass-through mode,
there are fewer user options the user can make since the
counting follows a specific implementation.

Source. Figure 4.5a illustrates the architecture of the statistics
flow. At the beginning of the flow, a Source emits the names of

50

the files to be processed. The Source lists both the submissions
and the comments archives. By default, it takes all the
submissions and comments, but the optional filter to include
and exclude certain files applies here.

Flat map merge - Users in subreddits. The file is passed
into the flat map merge, where the compressor input stream
source is created. The source emits a steam of unstructured
byte chunks and can span over multiple lines or less than one
line. To create messages of whole entities to pass on, the stream
is framed into a stream of bytes that belong into one line by
looking for the new line byte sequence.
These lines of bytes contain one JSON object each. Therefore the
next step is to deserialize the JSON into the corresponding case
class with spray-json [46].
Since now objects are passed along the stream, we can operate
on them. First, we filter deleted users since we cannot associate
them with a specific account. Leaving the deleted users in the
stream would increase the final count of each subreddit by 0 or
1
The "count Users in Subreddit per File" operator contains the
logic for counting the users. It is implemented as a stateful
map concat. It being stateful means that the flow can hold
an internal state accessible for every element that is processed
on the stream. In this internal state, we hold a mutable
HashMap[String, HashMap[String, Int]]. Subreddit names
index the outer Hashmap. In the inner Hashmap, we hold
another Hashmap that contains the users in this subreddit,
plus an integer counter with the number of contributions per
subreddit.
For each UserInSubredditEntity on the incoming stream, the
flow checks if the subreddit is present in the hashmap. If
the subreddit is not present, a new child Hashmap is created,
including the current user with a count of 1. If the subreddit is
present, the user is added or updated in the child Hashmap. In
the update operation, the counter is increased by one.
It is to note that the "count Users in Subreddit per File" does not
emit an output element towards the stream for every incoming
element. It buffers until the processed archive file reaches
the end of the file. Once the last entity is processed, a list
of subreddits and users in that subreddit is created from the
Hashmap. All the elements that List[CountPerSubreddit] are
emitted to output.

Flat map merge - User contributions per subreddit. The user
contribution per subreddit count is similar to the users in
subreddits count. The only differences are that the deleted users

51

are not filtered because they still count as a contribution by
some user. Since we do not take the user names into account,
the Hashmap is simpler HashMap[String, Int]. The index
contains the subreddit name, and the value holds a counter
for the subreddit that is increased according to the entity’s
subreddit. The User contributions per subreddit directly emits
this list to the stream once the current file is completely read.

Merge. The counts per subreddit coming from the flat map
merge are unique per file but not unique considering all
files. We, therefore, have to merge the results of the parallel
processing stage. This was a conscious design decision to avoid
synchronizing access to one Hashmap while processing the
files. The merge operation is a stateful map concat that holds
an HashMap[String, Int]. In this Hashmap, we aggregate the
results we get from a single stream. Figure 4.5b illustrates
the merge operation. All the counts for the subreddits are
written into the stateful Hashmap. If an entry for the currently
processed subreddit already exists, we add up the count of
the entity from the stream to the count that is already in the
Hashmap. Once the results from all archive files are combined
into one Hashmap, the content of this Hashmap is emitted to
the stream and converted to CSV.

Sink. The writes the resulting CSV stream to disk. The option
to compress the output stream is there but not necessary since
the resulting file is rather small compared to the initial dataset.

Data flow and performance The data flow diagram in Figure
4.5b illustrates how the flow is parallelized. All the files are
processed and counted in parallel. However, the following
merging process is only running in one actor. This is a
bottleneck. Especially when most of the files are processed,
fewer and fewer CPU threads are utilized by the program
because combining all the intermediate results in one enormous
hashmap takes time. Nevertheless, this is better than working
in one enormous hashmap during the whole process. Another
reason why this step seems to be lagging because it does not
receive a message before the first dataset file is fully processed.

Memory usage. This method of in-memory aggregation using
Hashsets was built around the idea of leveraging the capabili-
ties of eX³ nodes with 1 TB or 2 TB main memory. Therefore we
were running the Java Virtual Machine (JVM) with the maxi-
mum memory allocation pool set to 1.8 TB and the initial mem-
ory allocation pool set to 1 TB. The maximum memory usage

52

we logged from within the JVM was during the "user contribu-
tions per subreddit" run, with a total of 340 GB at the time of
logging.

4.1.6 Unit Tests

To ensure that the base implementation is working and test
certain program features isolated, we use unit tests. The tests
were implemented using ScalaTest. ScalaTests specification-
based approach makes it easy to write meaningful tests and
clarify what the implemented tests are for. The tests are
organized into three parts.

With ScalaTest, we can test classes and objects like with any
other unit test framework. However, it is impossible to execute
a Flow and get the results as it would be with a method. In order
to test flows, we have to run them in their own Actor system. To
do that, we create a simple Akka Streams Graph that provides
data via a source to the flow we want to test and then submits
the results in a sink. After running the whole Graph, we have
to verify the results from the Sink.

Statistics tests. The statistics specs verify that the counting of
users in subreddits is done correctly. They test that the flow that
counts users in subreddits per file countUsersInSubredditsPerFile
ignores multiple user entries per subreddit and does not in-
crease the count. Furthermore, it tests that the subreddits cre-
ated from the CSV are carried over correctly.

Flow tests. The flow tests ensure that the isolated sub-flows
operate as intended. The sub-flow ndJsonToSubmission should
convert JSON byte strings to Submission objects. We test
that by providing a simple JSON line and verify the results,
and then we do the same thing with a JSON line taken from
the live dataset. Furthermore, we test that the more generic
ndJsonToObject flow can deserialize a line from the Reddit
submissions dataset and convert it to a Submission. We also
assure that the ndJsonToObject ignores lines filled with null
bytes since they occur in the dataset. The other way around,
we also test that the objectToCsv flow can convert entities that
implement the ToCsv trait can be converted to CSV byte strings.

Model tests. The model tests verify that submission objects
are converted to the correct CSV lines and that the number of
CSV headers matches the number of fields. Currently, only

53

Files Source

Merge count in
Subreddit HashMap

File Sink
or

Compressor
Sink

Flat Map Merge

File Stream Source Split lines

deserialize JSON filter deleted
authors

count Users In
Subreddit per File

Stateful Map Concat

File
Name

Stream

Count per subreddit Stream
(subreddit, count)

- submissions
- comments

to CSV (subreddit,
count)

Stateful Map Concat
(costly operation)

(a) Flow implementation of the statistics mode (count users in subreddits)

Files Source

File Stream Source 1

to CSV (subreddit,
count)

File Sink

File Stream Source 2

Split lines 1

deserialize JSON 1

filter deleted authors 1

count Users In
Subreddit per File

Split lines 2

deserialize JSON 2

filter deleted authors 2

count Users In
Subreddit per File

Merge count in
Subreddit HashMap

politics, 200
fishing, 100

java, 98
politics, 15

java, 98
politics, 215
fishing, 100

- submissions
- comments

comments2.xzsubmissions1.zst

(b) Data flow

Figure 4.5: Graph 4.5a shows More text describing the graph. The Data
flow diagram 4.5b illustrates, how . More text describing the process.

54

the submission objects are under test because this helped with
detecting errors that occurred because of frequent changes to
the model during the implementation. The other model is
lacking a test.

4.2 Graph Building

The Graph Building application is used to construct the Reddit
Graph from the subreddit,user CSV that the Reddit Dataset
Stream Pipeline provides. It utilizes the JGraphT library as its
underlying data structure and utilizes Graph algorithms pro-
vided by JGraphT. Moreover, it can import previously gener-
ated graphs from edge and vertex lists to avoid regenerating
graphs for experiments.

The Graph Building application is implemented in Java. It
is using Gradle as its build automation tool and dependency
manager.

4.2.1 Building the graph

The graph is implemented as a JGraphT undirected weighted
graph DefaultUndirectedWeightedGraph<Vertex, Edge>. For
the edges and the vertices, we used custom implementation.
These custom classes implement serializable properties and
custom functions we use for calculating the scores on the graph.

In order to build the Graph, several steps are necessary. After
adding the vertices, we build a user subreddit map, from which
we determine the edges between the vertices. Once the edges
are added, we can calculate the scores and weights on the graph
over multiple iterations.

Reading the CSV stream. The Reddit Dataset Stream Pipeline
provides a subreddit,user CSV stream for the top n subred-
dits. From this stream, we are going to create the graph. The
CSV stream is read from a file stream. Depending on whether
the input stream is compressed, an additional Compressor In-
put Stream is used to handle the decompression. Since we are
using Open CSV [29] to parse the CSV, we can wrap the in-
put stream into a CSV Reader. The CSV reader implements
Iterable<String[]>, which means we can just use a loop to
read the CSV stream line by line. Each string array represents
one line of the subreddit,user CSV file. The input can be split
over n sequentially read files. In our case, we had one stream
for the submissions and one for the comments.

55

Adding vertices. While reading the input stream, we can
already add the vertices to the JGraphT Graph object. If a vertex
already exists, we skip it.

Subreddits per user map In the same loop, we will create a
HashMap[User, HashSet[Subreddit]]. When we read the CSV,
we find or add the user in the HashMap and add the subreddit
to the HashSet if it is not already present. We get a list of users
and, per user, a distinct list of subreddit the user contributed to.
We that later to determine where to create the edges. Reading
the files is done now. The next steps will be performed in
memory.

Determine edges In Section 3.3.2 we discussed the evolution
of the graph creation. In Figure 3.6 we illustrated how to com-
bine the list of subreddits associated with a user to get all pos-
sible unique combinations of subreddits per user. For exam-
ple for the subreddits A, B, C, all possible unique combinations
would be AB, AC, BC. We implemented the proposed method
while iterating over the HashMap[User, HashSet[Subreddit]].
For each of these subreddit combinations, an edge is added be-
tween the two vertices. In our example, we would add an edge
between AB, AC, and BC as illustrated in Figure 4.6.
Suppose an edge is already present in the graph, another user-
contributed to those subreddits. Since we want to show the con-
nection strength between subreddits, we increment Uij by call-
ing the method incrementNumberOfUsersInBothSubreddits on
the edge. Uij is defined as the number of users that posted at
least once in both subreddits.
Once we added all the edges for every user, we no longer need
the user subreddit HashMap. In order to reduce memory con-
sumption, the user entries from that hashmap are removed once
the edges for one user are added.

C

BA

Figure 4.6: Example graph between the subreddits we get if we draw an
edge for every unique combination (AB, AC, BC) between the subreddits
A, B, C.

56

Score calculation. In order to compute the graph scores faster,
this is done multi-threaded via Javas parallelStream() feature.
We also save the results of our calculations to reduce iterations
- especially for recursive operations. A downside of making
the computation parallel is that we now have to consider
that dependent values might not have been computed. We,
therefore, split up the calculation into three parts. Calculating
the vertex scores that do only depend on Uij and are therefore
independent. Calculating the edge scores that depend on these
vertex scores. Moreover, finally, the calculation of the vertex
scores that depend on the previously calculated edge scores.

Independent vertex score calculation When calculating the
independent vertex scores, we currently only calculate one
score. The Sum of edge weights Uij connected to the vertex.
This is done by looping through the edges connected to the
current vertex and adding the edge weights.

Edge score calculation We depend on the sumOfEdgeWeightsConnectedToVertex
calculated in the vertex score calculation step when calculating
the edge scores. For each edge, we cache the source and target
degrees by using the graph.degreeOf() provided by JGraphT.
Further, we cache the weighted source and target degree, the
average weighted source, and target edge weight. Finally, we
calculate the edge weight.

Vertex scores dependent on edge weight. As the last step, we
iterate over the vertices in parallel again to calculate:

Degree degree
Weighted degree degree
And the local clustering coefficient

4.2.2 Exporting the graph

Once the graph is built, we can export the graph. We will export
the graph as a DOT file to visualize it, and we will also export
the graph as a universal edge and vertex CSV list.

DOT file JGraphT has an integrated DOT exporter. We
manually have to specify which attributes are written into the
dot file. Dot files can be used to visualize the graph in tools like
Gephi.
The vertices in the dot file are exported with the following
attributes by adding a custom attribute provider.

57

• degree

• degree degree

• weighted degree

• weighted degree degree

• local clustering coefficient

Gephi uses the attribute "weight" for the edge weight. There-
fore, add an attribute that uses the edges weight property. We
only export the weight to keep the file size down since there
will be many more edges than vertices in the graph.

Vertex and Edge lists Vertex and edge lists are written as
CSVs since it is a straightforward format. They can be reused,
for example, by loading them into a data frame with Pandas
in Python. They also can be read fast to recreate the graph in
JGraphT. Therefore, it is not necessary to wait on the graph
generation to experiment within JGraphT. Writing the edge
and vertex list is straightforward. Both classes implement the
CSV interface that returns a string array. This string array can
be converted to a CSV line with Open CSV and then written
to a file. The file names can be specified by command-line
arguments.

4.2.3 Technical details of loading the graph

Load vertices from the vertex and edge CSV lists are simple.
The vertex and edge files are read with a File Reader. The file
reader is passed into an Open CSV CsvToBeanBuilder, which
can be used to provide us with an iterable stream of Vertex and
Edge objects. These objects are added to the graph object, and
our graph is recreated.

4.2.4 Command-line interface

Commandline interface is implemented using picoli, [31].
Currently, there is the option to decide between two modes -
creating the graph and loading the graph.

Graph Creation This mode builds the graph from the "sub-
reddit, user" CSV files. It is possible to specify one or more CSV
files as arguments. Furthermore, the user can specify files for
the DOT export as well as the locations of the vertex CSV and
edge CSV.

58

Load Graph This mode loads the graph from the vertex and
edge lists. Compared to building the graph again, it is much
more efficient. Arguments specify edge and vertex list CSV to
load the graph from. This mode also performs a DOT export,
which makes it easier to modify the DOT files for visualization.

4.3 Python scripts

During various steps of the project, we used an assortment of
Python scripts. Whether to take a quick look into the dataset or
to generate plots.

Filter lists The Reddit Dataset Stream Pipeline (RDSP) pro-
vides us with a list of subreddits and a count of how many
users are in that subreddit. We used a Python script to create
the filter lists for the RDSP pass-trough mode. We used Pandas
to load the dataset into a data frame. Then filtered and sorted
the dataset for the largest 5, 10, 100, 1000, and 10000 subreddits.
Then we export the subreddit names to a text file. Now we have
a list of the top 5, 10, 100, 1000, and 10000 subreddits we can use
to filter with the pass-through mode.

Experiments We used Python, Pandas, Mathplotlib, and
Jupyter Notebooks for many of the experiments described in
Chapter 5.

4.4 Supporting Tools

In Chapter 3.4, we proposed a few tools to support the
development process.

SLURM We used SLUM as proposed to schedule all the runs
on eX³. We, therefore, created an assortment of bash scripts
that made it easier to label all the resulting files, interpret
parameters and run the Reddit Dataset Stream Pipeline and the
Graph Building tool. Especially for creating the yearly graphs,
a scheduler like SLURM is helpful to run the batch jobs and
monitor the progress. Figure 4.7 shows the SLURM queue on
eX³, with 14 nodes working on different tasks in parallel.

Continuous Integration (CI) We implemented the CI / CD
pipeline using Github Actions as proposed in Figure 3.8.

59

Figure 4.7: The SLURM queue on eX³. In the queue, there are Various tasks
to filter and build the graphs. Currently, we are running the tasks on three
different queues using a total of 14 nodes in parallel. The active tasks are
for graph building, filtering and creating subsets of the dataset.

Google Drive and rclone Furthermore, we used Google Drive
to store a copy of the dataset and a copy of the results. Due to
the dataset size and the size of the results, we used rclone to
synchronize the files stored on eX³ with Google Drive.

60

Chapter 5

Experiments

This Section discusses experiments and statistics performed
on the Pushshift Reddit Dataset and the generated Graph.
For creating the graph, we determined the top n subreddits.
Furthermore, we show important metrics calculated for the
vertex and edge lists. Finally, we present a visualization of the
generated graph.

5.1 Top n subreddits

To get a deeper understanding of the Reddit landscape, we
had to develop a method to determine which subreddits are
of most importance. We, therefore, created the statistics mode
conceptualized in Chapter 3.2.1 and implemented it in Chapter
4.1.5. The statistic mode implements two ways of counting.
One that counts the number of contributions in subreddits and
one to count the number of unique users in subreddits. For
building the graph, we decided to use the "number of users
in subreddits" as a base to filter because we are also building
the graph based on the number of users in both subreddits and
not based on the number of contributions—nevertheless, the
contributions where helpful to get important insights on the
size of subreddits.

Creating a graph in the size of Reddit is a challenge. Due
to the vast number of users on Reddit, it is to be expected
that the graph between subreddits is highly connected. Storing
such a graph requires O(n2) space. Therefore, we have to
face constraints in time and memory. We, therefore, decided
to restrict the graph to the arbitrary limit of the top 10000
subreddits.

61

5.1.1 Number of unique users in subreddits between
2005 and 2019

When determining the number of unique users in subreddits
between 2005 and 2019, we count the number of unique users
that contributed at least once to a subreddit using the Reddit
Dataset Stream Pipeline (RDSP). A contribution can be either a
post or a comment.

The resulting "subreddit, count" CSV is sorted and filtered
with the pandas Python package, so we can get a list of the
top n subreddits we use as a base for generating the graph.
We created filter lists for the top 5, 10, 100, 1000, and 10000
subreddits based on this method. These are primarily used to
create graphs of different sizes. Furthermore, we created yearly
count lists, which are used to create yearly time slices of the
graph.

The ten largest subreddits by unique users are presented in
Table 5.1 in descending order. The counts revealed a significant
difference between the largest subreddit, "AskReddit" with
around 71 million unique contributors, and the second-largest
subreddit, "funny" with around 29 million unique contributors.
Further down the list, the differences between the subreddits
become less noticeable.

The histogram in Figure 5.1, shows how the number of
unique users is distributed over the subreddits. It is noteworthy
that the number of subreddits on the y-axis is represented in a
logarithmic scale, and the x-axis is scaled in steps of 10 million
users. To the right end of the x-axis, we can observe one isolated
bar representing the subreddit "AskReddit" with 71 million
unique contributors as listed in Table 5.1. Moreover, above the
20 million user mark, there are only the subreddits in 2nd and
3rd place from the same table. The vast majority of subreddits
are concentrated in the leftmost bar. In summary, these results
show that there are very few large subreddits but many small
subreddits.

5.1.2 Number of contributions in subreddits between
2005 and 2019

To determine the number of contributions in subreddits be-
tween 2005 and 2019, we count all submissions or comments
per subreddit using the Reddit Dataset Stream Pipeline (RDSP).
A contribution is a single submission or a single comment, and

62

0 1 2 3 4 5 6 7
Number of unique users in subreddit 1e7

100

101

102

103

104

105

106

Nu
m

be
r o

f s
ub

re
dd

its
Histogram of number of unique users per subreddit (2005-2019)

Figure 5.1: Distribution of uniqe users per subreddit. TODO: Explain
numbers 1e8. Log scale

they are weighted them equally. Meaning for every post or com-
ment in a subreddit, the count was incremented by one.

The resulting "subreddit, count" CSV is sorted and filtered
with pandas so that we can get a list of the top n subreddits.
We created filter lists for the top 5, 10, 100, 1000, and 10000
subreddits based on this method. These can be used to create
graphs. Furthermore, we created yearly count lists, which can
be used to create yearly time slices of the graph.

Table 5.2 lists the ten largest subreddits by contributions
in descending order. A significant difference was found be-
tween the first subreddit, "AskReddit" with around 508 million
contributions, and the second-largest subreddit, "politics" with
around 121 million contributions. Further down the list, the gap
between the subreddits becomes less prominent. Compared to
the user contributions in Table 5.2, the most popular subred-
dit "AskReddit" stays the same, but politics comes in 2nd and
pushes funny to the 3rd place.

The histogram in Figure ??, shows how the number of con-
tributions is distributed over the subreddits. It is noteworthy
that the number of subreddits on the y-axis is represented in a
logarithmic scale, and the number of contributions in the x-axis

63

subreddit count

AskReddit 71233827
funny 28882078
pics 25886189
gaming 19312574
videos 16283626
todayilearned 14796435
WTF 13238354
worldnews 12908501
aww 12354192
politics 11478928

Table 5.1: Top 10 subreddits by unique users between 2005-2019

is shown in steps of 100 million. To the right end of the x-axis,
we again can observe one isolated bar representing the subred-
dit "AskReddit" with 508 million contributions as listed in Table
5.2. Moreover, above the 100 million contributions mark, there
are only the subreddits in 2nd and 3rd place from the same table.
The vast majority of subreddits are concentrated in the leftmost
bar. This confirms what we saw in Section 5.1.1. We can observe
that there are very few large subreddits but a vast majority of
small subreddits.

0 1 2 3 4 5
Number of contributions in subreddit 1e8

100

101

102

103

104

105

106

Nu
m

be
r o

f s
ub

re
dd

its

Histogram of number of contributions per subreddit (2005-2019)

Figure 5.2: Distribution of user contributions per subreddit. TODO:
Explain numbers 1e8. Log scale.

64

subreddit count

AskReddit 508529584
politics 121041987
funny 100436096
pics 88154864
leagueoflegends 72562127
gaming 68271941
worldnews 67099490
nba 66082257
nfl 63448568
news 53710557

Table 5.2: Top 10 subreddits by contributions between 2005-2019

5.2 Graph scores

While creating the graphs, we calculated various scores to gain
more insight into the overall graph and to determine the edge
weight in multiple iterations. In this Section we will look into
those scores in detail. We used pandas to load the edge and
vertex lists we exported after creating the graph into a data
frame to analyze the scores.

5.2.1 Vertex scores

Figure 5.3 shows distributions for all the calculated vertex
scores.

U. in Figure 5.3a is the sum of all edge Uij (users in both
subreddits) connected to a vertex. Thus, Uij is the number of
users that posted in both subreddits. Interestingly we can still
see the same decline as we saw when counting the users per
subreddit in Section 5.1.1, just on a more detailed scale.

Local clustering coefficient. The local clustering coefficient in
Figure 5.3b indicates that the graph is almost fully connected
and that it is tightly coupled as suspected. This can be explained
by the fact that we are using only the top 10000 subreddits as
a basis, meaning if there is only one user that posts in two
subreddits, there will be an edge - which is quite likely for so
many users.

Degree. The degree in Figure 5.3c is the sum of edges
connected to this vertex. Many vertices are connected to

65

all other vertices. The least connected subreddits are still
connected to over 8400 neighbors, confirming that this graph
is highly connected.

Weighted degree. The weighted degree in Figure 5.3d puts
the degree in relation with the sum of users that posted in this
and another subreddit U. The weighted degree is defined as
weighteddegree = U/degree.

Degree degree. The degree degree in Figure 5.3e is the sum
of edges connected to the neighbors of this vertex. As with the
degree, the degree degree indicates the same trend towards a
fully connected graph.

Weighted degree degree. The weighted degree degree in Fig-
ure 5.3f puts the degree degree in relation with the sum of users
connected to neighbors of this subreddit. The weighted degree
is defined as weighteddegreedegree = sum(U)/degreedegree.

5.2.2 Edge scores

Figure 5.4 shows distributions for all the calculated edge scores,
including the weight Wij. i and j stand for the subreddits
connected by the edge.

Number of contributors in both subreddits. The number of
users that contributed in both subreddits i and j at least once is
defined as Uij. Figure 5.4a shows the distribution of Uij. When
looking at the user counts associated with the edges, we can see
the same behavior as with the users. A few edges with many
users posting in two subreddits and many edges with fewer
contribution users. This indicates that not all edges are equally
strong.

Source and target degree. The degree distribution for i in
Figure 5.4c and the degree distribution for j in Figure 5.4dshows
the degree of the connected vertices. Here we can see as well
that many vertices are connected to all other 10000 vertices.

Weighted source and target degree. The weighted degree in
Figure 5.4e and Figure 5.4f is the sum of all U connected to the
source vertex i and respectively the target vertex j. In other
words, the sum of all edge Uij connected to the vertex i or j.

66

Average weighted source and target weight. The average
weighted edge weight is the number of users connected to the
source or target vertex divided by the source or target degree.
Those can be defined as:

ai =
Ui

degree(i)

aj =
Uj

degree(j)

Figure 5.4g and Figure 5.4h show the distributions of the
average weighted edge weights.

Edge weight. The edge weight Wij sets the amount of contrib-
utors hat contributed in the connected subreddits in relation to
amount of users connected all the neigbours of the source and
target. The edge weight Wij is be defined as:

Wij =
Uij

(weightedSourceDegree + weightedTargetDegree)/2

Figure 5.4b shows the distribution of the edge weight. As with
Uij we find that there are many low edge weights and few high
edge weights. We can use that when representing the graph by
filtering edges with low edge weights to show the structure of
the graph.

5.3 Graph visualization

In order to investigate the generated graph in detail, we create
a visual representation of the graph. Visualizing the fully
connected graph is challenging because there are 49966785
edges in the graph. We therefore opted to filter edges with
a weight lower than about one third. Figure 5.6 shows the
graph for the top 1000 subreddits from 2005 until 2019. The
different colours mark different clusters as identified by Gephis
modularity rank. Figure shows the top 10 thousand subreddits
divided into communities. An intersting observation is how
mainstream anime and gaming have become.

67

0 1 2 3
Ui 1e8

100

101

102

103

104

n

Vertex list Ui

(a) U

0.9997 0.9998 0.9999
local-clustering-coefficient

100

101

102

103

n

Vertex list local-clustering-coefficient

(b) local clustering coefficient

8500 9000 9500 10000
degree

100

101

102

103

104

n

Vertex list degree

(c) degree

0 10000 20000 30000
weighted-degree

100

101

102

103

104

n

Vertex list weighted-degree

(d) weighted degree

0.85 0.90 0.95 1.00
degree-degree 1e8

100

101

102

103

104

n

Vertex list degree-degree

(e) degree degree

4800 5000 5200
weighted-degree-degree

100

101

102

103

104

n

Vertex list weighted-degree-degree

(f) weighted degree degree

Figure 5.3: Vertex list top 10k 2005-2019 basic metrics

68

0 1 2 3 4
U_ij 1e6

101

103

105

107
n

Edge list U_ij

(a) Uij

0.00 0.01 0.02
W_ij

101

103

105

107

n

Edge list W_ij

(b) Wij

8500 9000 9500 10000
degree_i

103

104

105

106

107

n

Edge list degree_i

(c) degree i

8500 9000 9500 10000
degree_j

104

105

106

107
n

Edge list degree_j

(d) degree j

0 1 2 3
weighted-degree_i 1e8

104

105

106

107

n

Edge list weighted-degree_i

(e) weighted degree i

0 1 2 3
weighted-degree_j 1e8

103

104

105

106

107

n

Edge list weighted-degree_j

(f) weighted degree j

0 10000 20000 30000
avg-weighted-edge-weight_j

103

104

105

106

107

n

Edge list avg-weighted-edge-weight_j

(g) avg weighted edge weight i

0 10000 20000 30000
avg-weighted-edge-weight_j

103

104

105

106

107

n

Edge list avg-weighted-edge-weight_j

(h) agv weighted edge weight j

Figure 5.4: Edge list top 10k 2005-2019 basic metrics

69

gaming

askscience

trees

Jokes

reddit_com

gonewild

politics

offbeat

writing

IAmA

answers

nba

TwoXChromosomes

privacy

fffffffuuuuuuuuuuuu

pics

geek

Parenting

toronto

Python

LadyBoners

funny

poker

leagueoflegends

circlejerk

videos
WTF

starcraft

WeAreTheMusicMakers

FitnessMusic

AskReddit

nfl

todayilearned

DoesAnybodyElse

skeptic

fantasybaseball

Design

philadelphia

nsfw

tipofmytongue

hockey

movies

technology

MensRights

firstworldproblems

sports

Seattle

iphone

SuicideWatch

Art

Christianity

Minecraft

gadgets

business

Guitar

worldnews

beards

food

AdviceAnimals

Conservative

learnprogramming

Android

argentina

Cooking

electronicmusic

mylittlepony

space

Drugs

crochet

lgbt

scifi

MMA

photocritique

StarWars

wow

sex

gameofthrones

formula1

bjj

nyc

malefashionadvice

self

Gunners

LosAngeles

amiugly

atheism

anime

Cartalk

aww

snowboarding

Eve

dogs

news

depression

EarthPorn

startrek

conspiracy

vegan

Watches

gamedev

books

Metal

exmormon

Austin

lego

travel

canada

entertainment

secretsanta

comicbooks

newzealand

running

photography

Libertarian

buildapc

programming

pokemontrades

beer

electronic_cigarette

PS3

baseball

engineering

nosleep

boston

history

relationships

ireland

seduction

AskWomen

motorcycles

windows

worldpolitics

harrypotter

Economics

Health

Military

tf2

excel

environment

linux

Portland

CampingandHiking

Entrepreneur

Anarchism

drunk
thesims

listentothis

humor

skyrim

daddit

keto

philosophy

gifs

GetMotivated

bestof

RealGirls

texas

rant

Bitcoin

Meditation

headphones

soccer

fantasyfootball

doctorwho

CFB

bisexual

loseit

aviation

Diablo

ass

AndroidGaming

actuallesbians

AMA

LucidDreaming

techsupport

dogpictures

Metalcore

investing

sysadmin

Homebrewing

EngineeringStudents

RealEstate

mexico

ottawa

web_design

india

portugal

science

airsoft

jobs

community

tattoos

wallpapers

Documentaries

chicago

Accounting

NetflixBestOf

magicTCG

gardening

pokemon

pcmasterrace

RedditLaqueristas

discgolf

Guildwars2

explainlikeimfive

Terraria

itookapicture

DIY

relationship_advice

GoneWildPlus

asktransgender

hiphopheads

swtor

comics

drums

Autos

bayarea

YouShouldKnow

apple

television

gainit

Piracy

australia

Edmonton

math

bicycling

TheSimpsons

NSFW_GIF

r4r

rpg

cats

ar15

cars

booksuggestions

sanfrancisco

Bad_Cop_No_Donut

Baking

Catholicism

CHIBears

sweden

guns

Frugal

hardware

networking

Bass

Fantasy

cumsluts

ufc

Dallas

jailbreak

Fishing

audiophile

learnpython

google

boardgames

4chan

survivor

TrueReddit

woahdude

personalfinance

vita

webdev

Calgary

FoodPorn

creepy

vinyl

london

civ

golf

washingtondc

happy

newjersey

Warhammer

buildapcsales

gaymers

vancouver

pathofexile

adventuretime

houston

dating_advice

MTB

ukpolitics

europe

TheLastAirbender

rage

blender

applehelp

asoiaf

confession

skiing

Cricket

GameDeals

battlefield3

bodybuilding

MLS

kpop

bipolar

LiverpoolFC

offmychest

radiohead

OkCupid

freebies

youtube

futurama

startups

Madden

footballmanagergames

socialism

Fallout

runescape

gamecollecting

Psychonaut

lakers

ifyoulikeblank

cscareerquestions

Celebs

weddingplanning
malehairadvice

Filmmakers

nostalgia

graphic_design

knitting

Denver

zelda

cowboys

netflix

chelseafc

milf

CollegeBasketball

Coffee

ForeverAlone

LifeProTips

whatsthisbug

unitedkingdom

Steam

italy

javascript

childfree

Physics

japan

Atlanta

breakingbad

tipofmypenis

WWE

OnePiece

microgrowery

PoliticalDiscussion

sandiego

lotr

NoFap

drawing

medicine

Games

China

Sneakers

whatisthisthing

xxfitness

49ers

wicked_edge

EDM

halo

coys

KitchenConfidential

CODZombies

islam

IWantToLearn

Advice

MakeupAddiction

eagles

rugbyunion

truegaming

furry

skateboarding

gamernews

horror

climbing

mac

DotA2

AndroidQuestions

france

chemistry

CrappyDesign

GreenBayPackers

Naruto

SquaredCircle

MonsterHunter

yugioh

Nootropics

Maplestory

Gunpla

tennis

Pareidolia

BabyBumps

masseffect

Boxing

cordcutters

synthesizers

darksouls

MortalKombat

batman

manga

de

brisbane

3DS

LSD

talesfromtechsupport

southpark

pcgaming

leafs

AbandonedPorn

Jeep

Borderlands

howardstern

MapPorn

Romania

Yogscast

BMW

DunderMifflin

cosplay

asmr

SteamGameSwap

Rateme

fountainpens

androidapps

medicalschool

assassinscreed

PoliticalHumor

battlestations

gentlemanboners

knives

bostonceltics

edmproduction

Paranormal

stocks

interestingasfuck

HongKong

femalefashionadvice

dbz

ffxiv

tumblr

SubredditDrama

legaladvice

audioengineering

worldbuilding

woodworking

dirtypenpals

rule34

Denmark

nsfw_gifs

NASCAR

hardwareswap

SuggestALaptop

witcher

blog

vexillology

AskEngineers

Patriots

subaru

chess

singapore

meme

nintendo

shrooms

MilitaryPorn

FinalFantasy

HistoryPorn

Anxiety

hentai

BuyItForLife

PandR

BigBrother

college

CCW

Battlefield

reddevils

Philippines

nursing

totalwar

playstation

diablo3

sydney

IASIP

TrollXChromosomes

minnesotavikings

thewalkingdead

3Dprinting

MMORPG

Aquariums

AskScienceFiction

smashbros

frugalmalefashion

socialskills

confessions

Suomi

AirForce

opiates

progresspics

melbourne

reddeadredemption

ADHD

memes

Cyberpunk

NBA2k

Amd

StreetFighter

weed

popping

gundeals

EDC

wifesharing

announcements

metalgearsolid

KingdomHearts

forza

stopdrinking

makinghiphop

teenagers

findareddit

nvidia

KerbalSpaceProgram

lifehacks

WWII

WorldofTanks

wiiu

analog

Marvel

guitarpedals

whatsthisplant

DnD

AskHistorians

streetwear

Seahawks

HomeImprovement

flying

tall

Vaping

ThriftStoreHauls

Smite

torontoraptors

Browns

EDH

Unity3D

AskMen

MGTOW

carporn

army

nottheonion

promos

AnimalCrossing

paradoxplaza

starbucks

osugame

polandball

Teachers

Borderlands2

DCcomics

FIFA

FantasyPL

JoeRogan

Planetside

GlobalOffensive

britishproblems

succulents

Gamingcirclejerk

whowouldwin

teslamotors

JusticePorn

windowsphone

Nicegirls

spacex

cringe

shittyaskscience

ImGoingToHellForThis

roosterteeth

firstworldanarchists

bindingofisaac

GrandTheftAutoV

facepalm

gamingsuggestions

skyrimmods

raspberry_pi

tmobile

patientgamers

ladybonersgw

financialindependence

antiMLM

RandomActsOfGaming

reactiongifs

casualiama

GTAV

Futurology

MassiveCock

summonerschool

photoshopbattles

gaybros

AskCulinary

paydaytheheist

ExpectationVsReality

bodyweightfitness

rupaulsdragrace

Warhammer40k

brasil

SkincareAddiction

redditgetsdrawn

MechanicAdvice

techsupportgore

mildlyinteresting

terriblefacebookmemes

GaybrosGoneWild

dataisbeautiful

PS4

traps

Kappa

CrusaderKings

ShittyLifeProTips

ProgrammerHumor

TalesFromRetail

youtubehaiku

tifu

Animesuggest

RandomActsOfBlowJob

Firearms

buildapcforme

Justrolledintotheshop

supremeclothing

FORTnITE

curlyhair

Eyebleach

intermittentfasting

Pathfinder_RPG

Kanye
trap

modernwarfare

hmmm

dadjokes

CoDCompetitive

fireemblem

beyondthebump

OldSchoolCool

MorbidReality

dayz

wallstreetbets

SCP

blackops3

FanTheories

forwardsfromgrandma

UpliftingNews

elderscrollsonline

notinteresting

PersonalFinanceCanada

gonewildcurvy

watchpeopledie

homelab

ShouldIbuythisgame

solotravel

shittyfoodporn

Roadcam

fightporn

Warthunder

AskAnAmerican

FrankOcean

mildlyinfuriating

ProtectAndServe

MechanicalKeyboards

creepyPMs

gamegrumps

marvelstudios

greentext

arrow

CrazyIdeas

StardustCrusaders

WritingPrompts

InternetIsBeautiful

Surface

oculus

funkopop

MURICA

PleX

StarWarsBattlefront

MadeMeSmile

ContagiousLaughter

vaporents
standupshots

eu4

MaddenUltimateTeam

CombatFootage

traaaaaaannnnnnnnnns

SweatyPalms

ClashOfClans

instantkarma

PhotoshopRequest

malelivingspace

Rainbow6

copypasta

pettyrevenge

me_irl

TwoBestFriendsPlay

Warframe

TheRedPill

TalesFromYourServer

feedthebeast

starcitizen

BustyPetite

askgaybros

cringepics

TumblrInAction

GamePhysics

AskRedditAfterDark

mechmarket

RWBY

ProRevenge

dndnext

holdmybeer

EliteDangerous

battlefield_4

Twitch

AskUK

stevenuniverse

Windows10

HistoryMemes

EatCheapAndHealthy

WorldOfWarships

FiftyFifty

whitepeoplegifs

dirtyr4r

DirtySnapchat

changemyview

4PanelCringe

educationalgifs

Unexpected

churning

thatHappened

PuzzleAndDragons

Tinder

NoStupidQuestions

nononono

AsianBeauty

Showerthoughts

blunderyears

ShitAmericansSay

unpopularopinion

softwaregore

2007scape

AnimalsBeingJerks

Shitty_Car_Mods

DestinyTheGame

ShingekiNoKyojin

factorio

raisedbynarcissists

oldpeoplefacebook

AnimalsBeingBros

hearthstone

DarkSouls2

theydidthemath

CryptoCurrency

UnresolvedMysteries

dirtykikpals

Perfectfit

xboxone

DeepIntoYouTube

AnimalsBeingDerps

TooAfraidToAsk

fatlogic

Whatcouldgowrong

rickandmorty

thalassophobia

AppleWatch

blackdesertonline

StardewValley

thedivision

IdiotsFightingThings

ofcoursethatsathing

justneckbeardthings

im14andthisisdeep

OutOfTheLoop

1200isplenty

nonononoyes

playrust

gtaonline

AsiansGoneWild

AmItheAsshole

Damnthatsinteresting

titanfall

asktrp

AskDocs

btc

niceguys

OSHA

meirl

oddlysatisfying

GlobalOffensiveTrade

lewronggeneration

FlashTV

trashy

HighQualityGifs

RimWorld

DC_Cinematic

quityourbullshit

Wellthatsucks

Undertale

ApplyingToCollege

friendsafari

heroesofthestorm

PublicFreakout

DarkNetMarkets

iamverysmart

TrueOffMyChest

FunnyandSad

ANormalDayInRussia

dogecoin

indieheads

SandersForPresident

badwomensanatomy

hoi4

DiWHY

dankmemes

ComedyCemetery

PetiteGoneWild

RocketLeague
holdmycosmo

thenetherlands

Overwatch

oneplus

h1z1

fo4

shittysuperpowers

FashionReps

darksouls3

suggestmeabook

FellowKids

instant_regret

splatoon

CasualConversation

NoMansSkyTheGame

summonerswar

bloodborne

Fireteams

amiibo

dontdeadopeninside

natureismetal

gonewild30plus

KotakuInAction

Repsneakers

pussypassdenied

OopsDidntMeanTo

CitiesSkylines

sadcringe

HumansBeingBros

assholedesign

h3h3productions

AccidentalRenaissance

CozyPlaces

BokuNoHeroAcademia

BlackPeopleTwitter

starterpacks

millionairemakers

awfuleverything

coolguides

Competitiveoverwatch

CringeAnarchy

TopMindsOfReddit

ChoosingBeggars

entitledparents

bestoflegaladvice

dank_meme

westworld

apolloapp

BeAmazed

Justfuckmyshitup

WhitePeopleTwitter

funhaus

pokemongo

JUSTNOMIL

Vive

UNBGBBIIVCHIDCTIICBG

specializedtools

MealPrepSunday

thebutton

dankchristianmemes

JusticeServed

freefolk

ethtrader

confusing_perspective

anime_irl

DBZDokkanBattle

crappyoffbrands

forhonor

nevertellmetheodds

RoastMe

The_Donald

CatastrophicFailure

Seaofthieves

Blackops4

GifRecipes

discordapp

grandorder

KidsAreFuckingStupid

Paladins

LivestreamFail

Stellaris

BattlefieldV

FFBraveExvius

LateStageCapitalism

WhatsWrongWithYourDog

therewasanattempt

WeWantPlates

gifsthatkeepongiving

EnoughTrumpSpam

SWGalaxyOfHeroes

iamverybadass

BetterEveryLoop

insanepeoplefacebook

Ice_Poseidon

IdiotsInCars

EscapefromTarkov

rarepuppers

pyrocynical

furry_irl

madlads

ClashRoyale

PeopleFuckingDying

TheSilphRoad

StrangerThings

PSVR

evilbuildings

deadbydaylight

UnethicalLifeProTips

BikiniBottomTwitter

youseeingthisshit

Animemes

2meirl4meirl

AskOuija

battlefield_one

OverwatchUniversity

MaliciousCompliance

Breath_of_the_Wild

DMAcademy

gatekeeping

ChapoTrapHouse

ShitPostCrusaders

blackmagicfuckery

boottoobig

ATBGE

GooglePixel

PUBATTLEGROUNDS

RocketLeagueExchange

MemeEconomy

wholesomememes

NintendoSwitch

fakehistoryporn

cursedimages

NatureIsFuckingLit

BoneAppleTea

Memes_Of_The_Dank
DeepFriedMemes

woooosh

destiny2

JordanPeterson

PrequelMemes

MurderedByWords

FireEmblemHeroes

sbubby

CasualUK

WatchPeopleDieInside

iamatotalpieceofshit

IncelTears

PewdiepieSubmissions

MovieDetails

Brawlstars

AnthemTheGame

MonsterHunterWorld

Bossfight

The_Mueller

MagicArena

FortNiteBR

TheMonkeysPaw

insaneparents

Instagramreality

classicwow

technicallythetruth

forbiddensnacks

okbuddyretard

FortniteCompetitive

AbsoluteUnits

rareinsults

comedyheaven

CircleofTrust

thanosdidnothingwrong

ihadastroke

fo76

blursedimages

cursedcomments

SmashBrosUltimate

nextfuckinglevel

Cringetopia

youngpeopleyoutube

TIHI

apexlegends

pan_media

Figure 5.5: The final graph of subreddit relations from Gephi for the top
1000 subreddits.

70

gay

porn
gaming

dev

anime

general

music

Figure 5.6: The final graph of subreddit relations from Gephi for the top
10000 subreddits.

71

72

Part III

Conclusion

73

Chapter 6

Outlook

This thesis has demonstrated how to build a massive graph
between subreddits on Reddit from a dataset transformed
into a parallel stream. We, therefore, created the Reddit
Dataset Stream Pipeline (RDSP), a processing pipeline for the
Reddit dataset based on Akka Streams. We then had to
develop methods to create a graph between the subreddits
on Reddit and weigh them. We investigated the generated
graphs and presented the results of the experiments, including
a visualization of the graph.

Reddit Dataset Stream Pipeline. When creating the RDSP
we had to overcome the problem of file size. We, therefore,
introduced an approach to read, extract, filter, analyze and
transform the Reddit dataset with Akka Streams in parallel.
Since the resulting pipeline is stream-based, it can be extended
to function with live data in the future.

Graph building method. When creating the graph for Reddit
we had to work with independent subreddits. We developed
a method to create edges between subreddits by identifying
and aggregating users that contributed to two subreddits.
Furthermore, we developed a weighting method that took the
importance of neighbors into account and applied it to those
edges. The thesis gathers and discusses the distributions of the
scores in the graph and provides a more detailed overview of
the landscape of Reddit.

Parallel score calculation. Calculating all the metrics on a
graph of this size was a noteworthy challenge. In this thesis,
we showed how we could split up the workload into multiple
parallel executable workloads. The edge and vertex scores are
calculated in parallel over multiple iterations. Therefore we

75

could deal with expanding graph sizes and build the graph
promptly. It drastically reduced the overall compute time and
helped not consume more resources than necessary.

Graph visualization. Creating a visual representation of the
discovered graph helped us better understand if it is meaning-
ful and resembles the landscape of Reddit. In this thesis, we
have shown our representation of the subreddit landscape of
the top 10.000 subreddits. We introduced a custom edge weight
that takes neighbors into account. We filtered edges with low
edge weights to only show important edges. This was neces-
sary to keep the graph visually comprehensible.

Raw Graphs and Time Slices. To make the results more
accessible, we created a set of pre-processed graphs for the top
5, 10, 100, 1000, and 10000 subreddits. The created graphs are
stored as DOT files and as edge and vertex CSV lists. Moreover,
we pre-generated time slices from 2005 to 2019 – even though
the results are not discussed in this thesis. The time slices are
stored as DOT files and as edge and vertex CSV lists. Overall
a dataset of around 151 GB plus another 509 GB containing
compressed subsets of the Pushshift Reddit dataset were used
for creating the graphs.

Project Contribution. This thesis makes Reddit a data source
more accessible and provides prepared graphs that can be
further explored. It is the first contribution to the UMOD project
concerning Reddit.

In summary, we have shown a first approach of processing
the Reddit dataset as a stream and creating a graph between
independent subreddits based on user interaction.

6.1 Challenges

While creating the approach for this thesis, we faced several
challenges.

Dataset size. The most obvious challenge was the dataset size.
Working with such a vast amount of data requires time and
resources. Without the computing power of eX³ it would not
have been possible to handle the dataset in reasonable time.

76

Akka streams. The main challange wiht Akka Streams is that
it differs from standard programming models. It took some
time to think in flows and form proper streams that performed
well. A significant effort was neccessary to determine where to
place async boundaries to improve performance.

Visualizing the graph. When visualizing such a large graph,
we ran into limitations on what software like Gephi can do on
a notebook. The main problem was the large number of edges
that require substantial amounts of memory. However running
visualization programs on the server comes with perfromance
problems on its own.

6.2 Limitations

Live data. Initially, it was intended that the system would
scrape and continuously refresh the dataset with live data from
Reddit. During our research, we found out about the Pushshift
Reddit dataset and concluded to use that dataset as a basis
for the thesis. The main reason against scraping the data
ourselves was that it would not be feasible for us to scrap all the
information we need with Reddit’s described rate limitation.

Limited to the top n subreddits. We found an approach
for building a graph between the most important subreddits.
However, our method is currently still limited by memory and
CPU resources. With the shown method, it is therefore not
feasible to create a graph containing all the subreddits.

6.3 Future Work

Livestream data. One future improvement would be to ex-
tend the RDSP, so it can steam data from a live source, such
as a continuously running crawler. First, this requires the use
of a different Source that replaces the Files Sorce. Second, it is
necessary to create a stateful operation that determines the top
n subreddits on the stream. To not be bound by memory, we
suggest creating time slices. The stateful operation must be lim-
ited to either a sliding or a rolling window to not consume a
possibly infinite amount of memory.

Create graphs on stream. Another improvement would be to
create graphs while streaming. We propose to use the same
windowed approach to create time slices.

77

Akka cluster. In order to handle the possibly growing amount
of data Reddit provides, it would be interesting to look into
how Akka cluster could help split the workload onto multiple
machines – for a continuously running stream-based system.

Measure the graph. We have performed basic experiments on
the created graph. We propose to conduct further experiments
in order to get a better understanding of the graph. It could be
interesting to better understand how two subreddits connect,
what the shortest path between two subreddits is, and how
subreddits cluster together.

Experiments over time. With the created time slices, there
is the possibility to look at how Reddit changes over the
years. We suggest looking at the distributions over time
and investigate if Reddit as a community grows together or
vice versa. Furthermore, it can be interesting to visualize
the development of the Reddit graph over time. We suggest
visualizing how different subreddits grow and gain importance
by increasing the vertex size dynamically.

Predictions. When looking at the graph over time, it would
be interesting to see if one could predict how certain aspects
of the graph will behave. However, it would require more
fine grained time slices and possibly more metadata to train a
learning algorithm.

Directional Graph. In this thesis, we created an undirected
graph of Reddit. We recommend that future research examines
how to create a directional graph instead.

78

Bibliography

[1] 5G, coronavirus and contagious superstition. en. Section:
World news. Apr. 2020. URL: http : / / www . theguardian .
com/world/2020/apr/26/5g- coronavirus- and- contagious-
superstition (visited on 05/19/2021).

[2] Katie Anderson. “Ask me anything: what is Reddit?” In:
Library Hi Tech News 32 (July 2015), pp. 8–11. DOI: 10.1108/
LHTN-03-2015-0018.

[3] Mathieu Bastian, Sebastien Heymann, and Mathieu Ja-
comy. “Gephi: An Open Source Software for Exploring
and Manipulating Networks.” en. In: Proceedings of the
International AAAI Conference on Web and Social Media 3.1
(Mar. 2009). Number: 1. ISSN: 2334-0770. URL: https://ojs.
aaai.org/index.php/ICWSM/article/view/13937 (visited on
05/28/2021).

[4] Jason Baumgartner et al. “The Pushshift Reddit Dataset.”
en. In: Proceedings of the International AAAI Conference on
Web and Social Media 14 (May 2020), pp. 830–839. ISSN:
2334-0770. URL: https : / /www . aaai . org / ojs / index . php /
ICWSM/article/view/7347 (visited on 07/26/2020).

[5] Alexandre Bovet and Hernán A. Makse. “Influence of
fake news in Twitter during the 2016 US presidential
election.” en. In: Nature Communications 10.1 (Jan. 2019).
Number: 1 Publisher: Nature Publishing Group, p. 7.
ISSN: 2041-1723. DOI: 10.1038/s41467-018-07761-2. URL:
https : / /www .nature . com/articles / s41467 - 018 - 07761 - 2
(visited on 05/19/2021).

[6] Commons Compress – Overview. URL: http : / / commons .
apache . org / proper / commons - compress/ (visited on
05/28/2021).

[7] Configuration • Akka Documentation. URL: https://doc.akka.
io/docs/akka/2.5.32/general/configuration.html (visited on
01/11/2021).

79

http://www.theguardian.com/world/2020/apr/26/5g-coronavirus-and-contagious-superstition
http://www.theguardian.com/world/2020/apr/26/5g-coronavirus-and-contagious-superstition
http://www.theguardian.com/world/2020/apr/26/5g-coronavirus-and-contagious-superstition
https://doi.org/10.1108/LHTN-03-2015-0018
https://doi.org/10.1108/LHTN-03-2015-0018
https://ojs.aaai.org/index.php/ICWSM/article/view/13937
https://ojs.aaai.org/index.php/ICWSM/article/view/13937
https://www.aaai.org/ojs/index.php/ICWSM/article/view/7347
https://www.aaai.org/ojs/index.php/ICWSM/article/view/7347
https://doi.org/10.1038/s41467-018-07761-2
https://www.nature.com/articles/s41467-018-07761-2
http://commons.apache.org/proper/commons-compress/
http://commons.apache.org/proper/commons-compress/
https://doc.akka.io/docs/akka/2.5.32/general/configuration.html
https://doc.akka.io/docs/akka/2.5.32/general/configuration.html

[8] Helana Darwin. “Doing Gender Beyond the Binary: A
Virtual Ethnography.” en. In: Symbolic Interaction 40.3
(2017), pp. 317–334. ISSN: 1533-8665. DOI: 10.1002/symb.
316. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/
symb.316 (visited on 07/08/2020).

[9] Adam L. Davis. “Akka Streams.” en. In: Reactive Streams
in Java: Concurrency with RxJava, Reactor, and Akka Streams.
Ed. by Adam L. Davis. Berkeley, CA: Apress, 2019, pp. 57–
70. ISBN: 978-1-4842-4176-9. DOI: 10 . 1007/978 - 1 - 4842 -
4176-9_6. URL: https://doi.org/10.1007/978-1-4842-4176-
9_6 (visited on 05/21/2021).

[10] Adam L. Davis. “Introduction to Reactive Streams.” en.
In: Reactive Streams in Java: Concurrency with RxJava,
Reactor, and Akka Streams. Ed. by Adam L. Davis. Berkeley,
CA: Apress, 2019, pp. 1–3. ISBN: 978-1-4842-4176-9. DOI:
10.1007/978-1-4842-4176-9_1. URL: https://doi.org/10.
1007/978-1-4842-4176-9_1 (visited on 05/21/2021).

[11] Michael Fire and Carlos Guestrin. “The Rise and Fall
of Network Stars: Analyzing 2.5 million graphs to re-
veal how high-degree vertices emerge over time.” In:
arXiv:1706.06690 [physics] (Oct. 2018). arXiv: 1706.06690.
URL: http : / / arxiv . org / abs / 1706 . 06690 (visited on
06/29/2020).

[12] flatMapMerge • Akka Documentation. URL: https : / / doc .
akka. io/docs/akka/current/stream/operators/Source- or-
Flow/flatMapMerge.html (visited on 05/28/2021).

[13] Martin Fowler. Continuous Integration. May 2006. URL:
https : / /martinfowler . com/articles / continuousIntegration .
html (visited on 05/26/2021).

[14] Gradle | Gradle vs Maven Comparison. en-US. URL: https :
//gradle.org/maven-vs-gradle/ (visited on 05/30/2021).

[15] Jan Heichler. “Introduction to BeeGFS.” en. In: (), p. 11.

[16] Sandra Henry-Stocker. Why you should use named pipes on
Linux. en. Jan. 2018. URL: https://www.networkworld.com/
article / 3251853 / why - use - named - pipes - on - linux . html
(visited on 05/31/2021).

[17] Carl Hewitt. “Viewing control structures as patterns of
passing messages.” en. In: Artificial Intelligence 8.3 (June
1977), pp. 323–364. ISSN: 0004-3702. DOI: 10.1016/0004-
3702(77) 90033 - 9. URL: https : / / www . sciencedirect .
com / science / article / pii / 0004370277900339 (visited on
06/15/2021).

80

https://doi.org/10.1002/symb.316
https://doi.org/10.1002/symb.316
https://onlinelibrary.wiley.com/doi/abs/10.1002/symb.316
https://onlinelibrary.wiley.com/doi/abs/10.1002/symb.316
https://doi.org/10.1007/978-1-4842-4176-9_6
https://doi.org/10.1007/978-1-4842-4176-9_6
https://doi.org/10.1007/978-1-4842-4176-9_6
https://doi.org/10.1007/978-1-4842-4176-9_6
https://doi.org/10.1007/978-1-4842-4176-9_1
https://doi.org/10.1007/978-1-4842-4176-9_1
https://doi.org/10.1007/978-1-4842-4176-9_1
http://arxiv.org/abs/1706.06690
https://doc.akka.io/docs/akka/current/stream/operators/Source-or-Flow/flatMapMerge.html
https://doc.akka.io/docs/akka/current/stream/operators/Source-or-Flow/flatMapMerge.html
https://doc.akka.io/docs/akka/current/stream/operators/Source-or-Flow/flatMapMerge.html
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://gradle.org/maven-vs-gradle/
https://gradle.org/maven-vs-gradle/
https://www.networkworld.com/article/3251853/why-use-named-pipes-on-linux.html
https://www.networkworld.com/article/3251853/why-use-named-pipes-on-linux.html
https://doi.org/10.1016/0004-3702(77)90033-9
https://doi.org/10.1016/0004-3702(77)90033-9
https://www.sciencedirect.com/science/article/pii/0004370277900339
https://www.sciencedirect.com/science/article/pii/0004370277900339

[18] Carl Hewitt, Peter Bishop, and Richard Steiger. “A uni-
versal modular ACTOR formalism for artificial intelli-
gence.” In: Proceedings of the 3rd international joint con-
ference on Artificial intelligence. IJCAI’73. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., Aug. 1973,
pp. 235–245. (Visited on 06/15/2021).

[19] Victoria Holec and Amy Mack. “Researching Reddit: On
the Affordances and Challenges of Social Media Data
Collection and Analysis.” In: The Journal of Communication
and Media Studies 5.1 (2020), pp. 15–30. ISSN: 2470-9247,
2470-9255. DOI: 10.18848/2470-9247/CGP/v05i01/15-30.
URL: https://cgscholar.com/bookstore/works/researching-
reddit (visited on 05/14/2020).

[20] Homepage - Reddit. Library Catalog: www.redditinc.com.
URL: https://www.redditinc.com/ (visited on 07/07/2020).

[21] In the Elevator With Reddit CEO Steve Huffman. en. The
Wall Street Journal: Video. URL: https ://www.wsj . com/
video/ series / in - the - elevator - with/ in - the - elevator - with -
reddit - ceo - steve - huffman/ 76E47E38 - 773F - 4E77 - 9EFE -
3A6DE234523F (visited on 07/07/2020).

[22] Introduction • Akka Documentation. URL: https://doc.akka.
io / docs / akka / current / stream/ stream - introduction . html
(visited on 06/15/2021).

[23] Introduction to Named Pipes | Linux Journal. URL: https :
/ / www . linuxjournal . com / article / 2156 (visited on
05/31/2021).

[24] Mathieu Jacomy et al. “ForceAtlas2, a Continuous Graph
Layout Algorithm for Handy Network Visualization
Designed for the Gephi Software.” en. In: PLOS ONE 9.6
(June 2014). Publisher: Public Library of Science, e98679.
ISSN: 1932-6203. DOI: 10.1371/journal.pone.0098679. URL:
https : / / journals . plos . org / plosone / article ? id=10 . 1371 /
journal.pone.0098679 (visited on 05/26/2021).

[25] Johannes Langguth. UMOD: Understanding and Monitor-
ing Digital Wildfires. en. Dec. 2017. URL: https : / / www .
simula . no / research / projects / umod - understanding - and -
monitoring-digital-wildfires (visited on 05/20/2021).

[26] Dimitrios Michail et al. “JGraph - A Java Library for
Graph Data Structures and Algorithms.” In: ACM Trans-
actions on Mathematical Software 46.2 (May 2020), 16:1–
16:29. ISSN: 0098-3500. DOI: 10.1145/3381449. URL: http:
//doi.org/10.1145/3381449 (visited on 06/09/2021).

[27] Mission. en-US. URL: https://www.ex3.simula.no/mission
(visited on 05/29/2021).

81

https://doi.org/10.18848/2470-9247/CGP/v05i01/15-30
https://cgscholar.com/bookstore/works/researching-reddit
https://cgscholar.com/bookstore/works/researching-reddit
https://www.redditinc.com/
https://www.wsj.com/video/series/in-the-elevator-with/in-the-elevator-with-reddit-ceo-steve-huffman/76E47E38-773F-4E77-9EFE-3A6DE234523F
https://www.wsj.com/video/series/in-the-elevator-with/in-the-elevator-with-reddit-ceo-steve-huffman/76E47E38-773F-4E77-9EFE-3A6DE234523F
https://www.wsj.com/video/series/in-the-elevator-with/in-the-elevator-with-reddit-ceo-steve-huffman/76E47E38-773F-4E77-9EFE-3A6DE234523F
https://www.wsj.com/video/series/in-the-elevator-with/in-the-elevator-with-reddit-ceo-steve-huffman/76E47E38-773F-4E77-9EFE-3A6DE234523F
https://doc.akka.io/docs/akka/current/stream/stream-introduction.html
https://doc.akka.io/docs/akka/current/stream/stream-introduction.html
https://www.linuxjournal.com/article/2156
https://www.linuxjournal.com/article/2156
https://doi.org/10.1371/journal.pone.0098679
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098679
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098679
https://www.simula.no/research/projects/umod-understanding-and-monitoring-digital-wildfires
https://www.simula.no/research/projects/umod-understanding-and-monitoring-digital-wildfires
https://www.simula.no/research/projects/umod-understanding-and-monitoring-digital-wildfires
https://doi.org/10.1145/3381449
http://doi.org/10.1145/3381449
http://doi.org/10.1145/3381449
https://www.ex3.simula.no/mission

[28] Benjamin Muschko. Gradle in action. OCLC: ocn870650386.
Shelter Island, NY: Manning, 2014. ISBN: 978-1-61729-130-
2.

[29] opencsv –. URL: http://opencsv.sourceforge.net/ (visited on
05/30/2021).

[30] Sahil Patel. “Reddit Claims 52 Million Daily Users,
Revealing a Key Figure for Social-Media Platforms.” en-
US. In: Wall Street Journal (Dec. 2020). ISSN: 0099-9660.
URL: https : / /www .wsj . com/ articles / reddit - claims - 52 -
million-daily-users- revealing-a-key-figure- for-social-media-
platforms-11606822200 (visited on 05/19/2021).

[31] picocli - a mighty tiny command line interface. URL: https :
//picocli.info/ (visited on 05/31/2021).

[32] Publications. en-US. URL: https : / / www . ex3 . simula . no /
publications (visited on 05/29/2021).

[33] Pusher Realtime Reddit API. en-US. Aug. 2014. URL: https:
//blog.pusher.com/pusher-realtime-reddit-api/ (visited on
07/09/2020).

[34] r/pushshift - Download-able dumps of comments as they appear
at time of post? en-US. Library Catalog: www.reddit.com.
URL: https : / /www . reddit . com/ r / pushshift / comments /
dig2u3/downloadable_dumps_of_comments_as_they_
appear_at/ (visited on 04/22/2020).

[35] r/pushshift elastic.pushshift.io is currently blocked. en-US.
Library Catalog: www.reddit.com. URL: https : / / www .
reddit.com/r/pushshift/ (visited on 07/09/2020).

[36] reddit-archive/reddit Wiki API. en. Library Catalog: github.com.
URL: https://github.com/reddit- archive/reddit/wiki/API
(visited on 07/08/2020).

[37] reddit-archive/reddit Wiki JSON. en. Library Catalog: github.com.
URL: https://github.com/reddit-archive/reddit/wiki/JSON
(visited on 07/08/2020).

[38] reddit.com Competitive Analysis, Marketing Mix and Traffic -
Alexa. URL: https ://www.alexa . com/siteinfo/ reddit . com
(visited on 05/19/2021).

[39] reddit.com: API Dokumentation. URL: https://www.reddit .
com/dev/api (visited on 07/13/2020).

[40] Resources. en-US. URL: https : / / www . ex3 . simula . no /
resources (visited on 05/27/2021).

[41] sbt - The interactive build tool. URL: https : / /www . scala -
sbt.org/ (visited on 05/30/2021).

[42] sbt Reference Manual — sbt Reference Manual. URL: https :
//www.scala-sbt.org/1.x/docs/ (visited on 05/30/2021).

82

http://opencsv.sourceforge.net/
https://www.wsj.com/articles/reddit-claims-52-million-daily-users-revealing-a-key-figure-for-social-media-platforms-11606822200
https://www.wsj.com/articles/reddit-claims-52-million-daily-users-revealing-a-key-figure-for-social-media-platforms-11606822200
https://www.wsj.com/articles/reddit-claims-52-million-daily-users-revealing-a-key-figure-for-social-media-platforms-11606822200
https://picocli.info/
https://picocli.info/
https://www.ex3.simula.no/publications
https://www.ex3.simula.no/publications
https://blog.pusher.com/pusher-realtime-reddit-api/
https://blog.pusher.com/pusher-realtime-reddit-api/
https://www.reddit.com/r/pushshift/comments/dig2u3/downloadable_dumps_of_comments_as_they_appear_at/
https://www.reddit.com/r/pushshift/comments/dig2u3/downloadable_dumps_of_comments_as_they_appear_at/
https://www.reddit.com/r/pushshift/comments/dig2u3/downloadable_dumps_of_comments_as_they_appear_at/
https://www.reddit.com/r/pushshift/
https://www.reddit.com/r/pushshift/
https://github.com/reddit-archive/reddit/wiki/API
https://github.com/reddit-archive/reddit/wiki/JSON
https://www.alexa.com/siteinfo/reddit.com
https://www.reddit.com/dev/api
https://www.reddit.com/dev/api
https://www.ex3.simula.no/resources
https://www.ex3.simula.no/resources
https://www.scala-sbt.org/
https://www.scala-sbt.org/
https://www.scala-sbt.org/1.x/docs/
https://www.scala-sbt.org/1.x/docs/

[43] Daniel Thilo Schröder, Konstantin Pogorelov, and Jo-
hannes Langguth. “FACT: a Framework for Analysis and
Capture of Twitter Graphs.” In: 2019 Sixth International
Conference on Social Networks Analysis, Management and Se-
curity (SNAMS). Oct. 2019, pp. 134–141. DOI: 10 . 1109 /
SNAMS.2019.8931870.

[44] scopt/scopt. original-date: 2012-03-18T19:27:17Z. May 2021.
URL: https : / / github . com / scopt / scopt (visited on
05/27/2021).

[45] Philipp Singer et al. “Evolution of reddit: from the front
page of the internet to a self-referential community?” In:
Proceedings of the 23rd International Conference on World
Wide Web. WWW ’14 Companion. Seoul, Korea: Associ-
ation for Computing Machinery, Apr. 2014, pp. 517–522.
ISBN: 978-1-4503-2745-9. DOI: 10.1145/2567948.2576943.
URL: https://doi.org/10.1145/2567948.2576943 (visited on
07/06/2020).

[46] spray/spray-json. original-date: 2011-05-06T21:31:38Z. May
2021. URL: https://github.com/spray/spray-json (visited on
05/28/2021).

[47] Sho Tsugawa and Sumaru Niida. “The impact of social
network structure on the growth and survival of on-
line communities.” In: Proceedings of the 2019 IEEE/ACM
International Conference on Advances in Social Networks
Analysis and Mining. ASONAM ’19. Vancouver, British
Columbia, Canada: Association for Computing Machin-
ery, Aug. 2019, pp. 1112–1119. ISBN: 978-1-4503-6868-1.
DOI: 10.1145/3341161.3343526. URL: https://doi.org/10.
1145/3341161.3343526 (visited on 06/29/2020).

[48] Scott Wares, John Isaacs, and Eyad Elyan. “Data stream
mining: methods and challenges for handling concept
drift.” en. In: SN Applied Sciences 1.11 (Oct. 2019), p. 1412.
ISSN: 2523-3971. DOI: 10.1007/s42452- 019- 1433- 0. URL:
https://doi.org/10.1007/s42452- 019- 1433- 0 (visited on
05/14/2021).

[49] Tim Weninger, Xihao Avi Zhu, and Jiawei Han. “An
exploration of discussion threads in social news sites: A
case study of the Reddit community.” In: 2013 IEEE/ACM
International Conference on Advances in Social Networks
Analysis and Mining (ASONAM 2013). Aug. 2013, pp. 579–
583. DOI: 10.1145/2492517.2492646.

[50] Andy B. Yoo, Morris A. Jette, and Mark Grondona.
“SLURM: Simple Linux Utility for Resource Manage-
ment.” In: Job Scheduling Strategies for Parallel Processing.
Ed. by Gerhard Goos et al. Vol. 2862. Series Title: Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer

83

https://doi.org/10.1109/SNAMS.2019.8931870
https://doi.org/10.1109/SNAMS.2019.8931870
https://github.com/scopt/scopt
https://doi.org/10.1145/2567948.2576943
https://doi.org/10.1145/2567948.2576943
https://github.com/spray/spray-json
https://doi.org/10.1145/3341161.3343526
https://doi.org/10.1145/3341161.3343526
https://doi.org/10.1145/3341161.3343526
https://doi.org/10.1007/s42452-019-1433-0
https://doi.org/10.1007/s42452-019-1433-0
https://doi.org/10.1145/2492517.2492646

Berlin Heidelberg, 2003, pp. 44–60. ISBN: 978-3-540-20405-
3 978-3-540-39727-4. DOI: 10.1007/10968987_3. URL: http:
/ / link . springer . com / 10 . 1007 / 10968987_ 3 (visited on
05/26/2021).

[51] Savvas Zannettou et al. “Who Let The Trolls Out? To-
wards Understanding State-Sponsored Trolls.” In: Pro-
ceedings of the 10th ACM Conference on Web Science. WebSci
’19. New York, NY, USA: Association for Computing Ma-
chinery, June 2019, pp. 353–362. ISBN: 978-1-4503-6202-3.
DOI: 10.1145/3292522.3326016. URL: https://doi.org/10.
1145/3292522.3326016 (visited on 05/19/2021).

84

https://doi.org/10.1007/10968987_3
http://link.springer.com/10.1007/10968987_3
http://link.springer.com/10.1007/10968987_3
https://doi.org/10.1145/3292522.3326016
https://doi.org/10.1145/3292522.3326016
https://doi.org/10.1145/3292522.3326016

	I Introduction
	Introduction
	Problem definition
	Contributions
	Outline of the Thesis

	Background
	What is Reddit?
	Why is Reddit relevant to detect misinformation?
	Possible data sources
	Official Reddit API
	The Pushshift Reddit Dataset
	Pusher real-time Reddit API

	Reddit data structure
	Pushshift data structure
	Exemplary graph structure

	Actor Model
	Akka Streams
	JGraphT
	Gephi
	Gradle
	sbt
	Named Pipes
	Experimental Infrastructure for Exploration of Exascale Computing (eX³)
	Related work

	II The project
	Approach
	Understanding the Pushshift Reddit Dataset
	Reddit Dataset Stream Pipeline
	Statistics mode
	Passtrough mode
	Streams Flow Implementation
	Steps to get the data ready for the graph stage

	Graph Building
	Reddit Graph tool
	Evolution of the graph creation

	Supporting Tools
	Scheduling with SLURM
	ci builds, tests, and automatic updates

	Implementation
	Reddit Dataset Stream Pipeline
	Command-line interface
	System setup
	Akka streams architecture
	Pass-through mode
	Statistics mode
	Unit Tests

	Graph Building
	Building the graph
	Exporting the graph
	Technical details of loading the graph
	Command-line interface

	Python scripts
	Supporting Tools

	Experiments
	Top n subreddits
	Number of unique users in subreddits between 2005 and 2019
	Number of contributions in subreddits between 2005 and 2019

	Graph scores
	Vertex scores
	Edge scores

	Graph visualization

	III Conclusion
	Outlook
	Challenges
	Limitations
	Future Work

