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Abstract

In this thesis, we study the spread of content related to a conspiracy theory
with harmful consequences, a so-called Digital Wildfire (DW). We aim
to identify drivers, in complex temporal interaction networks underlying
Twitter user activity, to model these phenomena as phase transitions.
Furthermore, we investigate the component of The 5G and COVID-19
Misinformation Event that progressed on Twitter in the first half of 2020.
The 5G and COVID-19 Misinformation Event is the term adopted for
all communications surrounding the alleged connection between the 5G-
network and the COVID-19 pandemic and all the real-world implications
and consequences that followed. The main goal of the thesis is to lay
the foundation for the development of methods that enable us to predict
misinformation with the potential of causing harmful consequences. To the
best of our knowledge, this thesis is the first attempt at modeling DWs in
online social networks (OSNs) as phase transitions.

The main finding of the thesis is the identification of characteristics in
the dynamics of the communication underlying the DW showing similarities
to phase transitions. Furthermore, we identify candidates for the driving
forces of the observed transition, namely influential users. The results show
a nearly perfect overlap between the vertex with the highest degree centrality
and the largest cluster in our network, as well as a minor group of vertices
(< 4% of the population) with high degree centrality, at times, being inbound
to over half of the edges. These findings suggest that only a few influential
users are crucial in driving the conversation on a large scale, i.e., drawing a
significant amount of new users to the conversation.

Through three community detection algorithms, Leiden [1], Louvain [2],
and Label Propagation [3], we can conclude the existence of more than one
significantly large conversation cluster. Moreover, the largest conversation
cluster at the beginning of the DW does not stay the largest over time. Thus,
we find evidence for the DW extending from multiple significant origins.
Furthermore, while tracking, we observe oscillations in the largest clusters,
where two or more clusters go back and forth between being the largest.
Towards the peak on Twitter, we observe an increase in the fraction of the
vertices belonging to the top 10% largest clusters, indicating a centralization
of the overall discourse. The sum of the observations pointed out in this
paragraph indicates that DWs begin from multiple origins of misinformation
narratives that more and more become unified towards the peak of the DW.
This centralization process is an exciting candidate for an early indicator of
misinformation spreading with the potential of becoming a DW.
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Chapter 1

Introduction

Before the birth of the internet, people relied on newspapers and radio as
their main sources of news and facts. Back then, information was mainly
broadcast with a clear separation between source and consumer; the flow
of information was linear and slow, and it was common practice to trust
professionals when seeking counsel.

On January 1, 1983, the internet was born [4], a service that, in time,
would revolutionize the way we transmit and receive information. In its early
days, the internet was dominantly populated by users with backgrounds in
the STEM-fields. Their discussions did not yet reach a group of consumers
larger than those of the traditional broadcasting sources. The big change
came in the late 1990s with the launch of the first OSNs which suddenly
allowed access to people from all different backgrounds. Now, since anyone
can post on the internet, a strict distinction between source and consumer
is no longer evident. But without this distinction, can we still trust the
sources?

The reliability of today’s news agencies can be debated as it varies very
much from country to country and agency to agency. However, they are
generally held to a higher level of accountability than content posted on
social media accounts, where the limit for what is allowed to be posted is
usually only drawn by the freedom of speech. In the rare cases when content
posted in OSNs is fact-checked by independent fact-checkers, it is only after
posts have already reached potentially large groups of consumers.

However, the biggest problem is the extreme amount of data available
online. In 2018, about 2.5 quintillion bytes of data was produced on a daily
basis around the world [5], a number which has more than likely only grown
since then. With this amount of information, it is impossible to manually
fact-check; thus, most misinformation spreads unchecked, especially on social
media. In short, the fact that (1) anyone, regardless of their qualifications,
can post about anything online, (2) the resulting sheer amount of unchecked
misinformation, and (3) the lack of accountability imposed on the providers
of OSNs and their users, turns the sea of available information online into
a maze; tricky to navigate even if aware of these challenges, and potentially
dangerous if not.

Another significant change brought by the rise of the internet is the
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increased speed at which information travels across national borders. A post
on an OSN is instantly visible to a global audience, possibly resulting in
severe real-world implications [6–9].

When the spread of misinformation leads to destructive consequences,
who is to blame and what can we do about it? This has recently been a hot
topic, with the European Union discussing making OSNs accountable for the
consequences of content published on their platforms [10]. The problem is
still that no matter how many people are hired to maintain the integrity of
the content, they cannot keep up with the vast amount of information being
published. Thus, the risk of DWs spreading online stays present. According
to the World Economic Forum [11], a DW is a fast-spreading misinformation
that leads to real-world harm. To tackle the pressing issue of DWs we need to
discover ways of taking advantage of automated systems to understand how
these phenomena occur and how to stop them before they lead to real-world
implications.

Natural language processing is a class of automated systems used widely
to classify suspicious content automatically, where an established strategy
is to create manually labeled training sets. Even though this approach
significantly reduces the required amount of manual labour, machine learning
models lack an understanding of context. Thus, features like humour or
irony may not be taken into account, leading to miss-classifications. This is
especially true when considering social media posts, like tweets, that tend to
be brief and thus provide little context.

Due to these shortcomings, there is considerable motivation to explore
other, more general automatic detection methods. In this thesis, we
aim for a more generic approach exploiting not only the content
but rather the underlying interactions within OSNs to gain
knowledge about the properties and dynamics of the spread of
misinformation with harmful consequences on a societal scale.
Specifically, we investigate the evolution of the temporal networks induced
by the interactions between Twitter users during a misinformation event.

The particular temporal network we study originates from contacts
between Twitter users connected to the 5G and COVID-19 Misinformation
Event [12], a series of tweets claiming a link between the COVID-19 virus
and 5G technology that lead to a DW. This DW reached its peak around
April 2020, resulting in the destruction of 5G-related telecommunication
equipment and the harassment of technicians. Only after these real-
world consequences occurred did Twitter realize the threat connected to
the DW and placed a ban on tweets promoting attacks on 5G-equipment
(see Section 2.2). The 5G and COVID-19 Misinformation Event is a good
example of how difficult it is to identify DWs before real-world consequences
occur, and the magnitude of the consequences expresses how important it is
that we find methods to identify them in their early stages.

We examine the temporal evolution of the interaction network, i.e., the
spreading of misinformation related to the event. On Twitter, individual
information cascades exist in the form of tweet threads. Realizing that
some DWs consist of a multitude of information cascades, we investigate the
evolution of the 5G and COVID-19 misinformation event by looking at the
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entire set of related cascades simultaneously. We begin by using methods
from Complex Network Theory such as community detection [1, 2, 13] to
investigate the dynamics of the network/spread of the DW. Moreover, we
look into the centrality and activity of the vertices to identify the impact
both group- and individual- activity has on the temporal evolution of the
network.

This thesis aims to study dynamics to describe and predict the evolution
of complex temporal networks related to the spread of misinformation. We
propose that this knowledge can be applied to tracking misinformation events
so that they can be identified early on and stopped before they turn into
DWs with real-world consequences. Specifically, aiding human moderators
in identifying the groups or conversations that have the highest probabilities
of causing DW in the future.

We found that the DW we look at in this thesis displays behaviours
similar to phase transitions. Moreover, we observed tendencies for
centralization of the conversations toward the peak of the DW and
indications of influential users being viable candidates for drivers of the
transition we observed.

The motivation behind looking at this problem from the view of a
physicist lies in the advancements and contributions already made in the
field of complex network theory by researchers with a background in
physics. Albert-László Barabási [14–16], Mark Newman [13, 17–19], and
Santo Fortunado [20] are great examples of physicists who have developed
methods for analyzing complex networks or in other ways contributed to
the progression of the field. Studying the temporal evolution of dynamical
systems is strongly related to physics, so even if the network at hand is
produced by social science data, the investigation into how it evolves is
done through methods much closer to physics than social science. Social
Physics [21] is a field that has emerged from problems like the one we have
at hand. In short, it is the implementation of methods and models from
physics and mathematics applied to problems in the world of social science.
Interdisciplinary fields like this provide new insight into problems that can
not be seen using methods from one field alone.

For the code developed during the course of this thesis, see the GitHub
repository KasparaGaasvaer/MasterThesis.
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1.1 Defining Research Questions and Challenges

This thesis aims to understand the spread of misinformation events with
severe real-world consequences, the so-called DWs. Previous research
has shown that investigating only the diffusion pattern of such kind of
misinformation on an individual basis is not promising at all [22, 23]. Even
more, it seems that we can only understand a DW when examining the
entirety of information cascades associated to it [24]. Thus, the main research
question of this thesis can be summarized as follows:

Given the interaction data of an entire digital wildfire
from the online social network Twitter, can we explain
its dynamics and temporal evolution on a societal scale
by using complex and temporal networks?

Given for this thesis is the data, more precisely, tweets, retweets, and
replies, from the OSN Twitter related to the so-called 5G and COVID-19
misinformation event (see Section 2.2), a DW that found its beginning in
January 2021 and whose aftermath continues to this day [12].

From the main research question, we can derive the sub-research-
questions and challenges, which we divide into the categories information
extraction & pre-processing, modeling of social networks and temporal data,
and analysis.

Information Extraction & Pre-processing

In this thesis, we work with a given dataset of billions of tweets containing
keywords related to the COVID-19 pandemic. The first big challenge at
hand is to handle this large amount of data in an efficient and organized
manner. We are investigating the DW revolving around the connection
between 5G network and COVID-19, and we expand on a framework of
filtering the dataset for relevant data points connecting the two. From there
the problem is to identify the data properties that are most essential to
modeling communication-based user interaction on a large scale and make
use of those to enrich our dataset through thread completion1.

Modeling of Social Networks and Temporal Data

The next challenge is to derive graph representations from the tweets that
can help us analyze the temporal evolution of the data and study the spread.
A big question is; how do we bend and section our data to maximize
the information available? Is there more to be gained by slicing based
on time, events, or graph attributes, and how can we extract such series
in general? From there, methods from complex network theory, such as
community detection algorithms and vertex centrality scores, seem promising
in describing the interactions in the graph. Thus, a challenge is to identify

1Thread completion in this context is to complete conversations in the filtered
dataset through looking for data containing certain attributes in the original dataset and
extracting parent-statuses from Twitter.
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suitable methods from these categories, where the over all goal is to answer
the question of whether or not it is possible to extract information about
the DW from the evolution of communities or through the activity of central
users.

Analysis

Finally, during the analysis of our results, the goal is to identify indicators of
a DW going viral in the graph representation of the dataset. A challenge is
to identify a natural way of dividing the DW into distinct phases, and if there
exists a well-defined phase for the emergence of the DW, can we determine if
the origins of a DW is a single source or multiple sources? Furthermore, we
must identify means we can use to investigate the scale of which the activity
of central users affects the total of active users contributing to the DW as
well as how the dynamics of the communities within the graph affect the
structure of the DW. A topic of interest here is looking for the existence of
a critical cluster size where the growth velocity of the cluster substantially
increases.

1.2 Contributions

This thesis proposes answers to the questions asked in the previous section.
The answers and discussion of our results contribute to several fields ranging
from Social Science to Complex Network Theory. In this section, we highlight
the main contributions.

In the fields of Computational Social Science and Social Physics,
we are the first ones that approach understanding the dynamics underlining
a DW with the help of physics-based methods. In particular, we use
community detection algorithms and centrality measures to identify possible
drivers of the temporal evolution in interaction networks related to the
spread of misinformation on a societal scale. As emphasized earlier, the real-
world consequences of a DW are destructive, and identifying the drivers that
lead to virality can allow for identification in the early stages and thus the
opportunity to intervene. Furthermore, we introduce the idea of modeling a
DW going viral as a phase transition in its underlying interactions.

Finally, we provide a set of candidates for drivers of the phase transition
and the physical quantities that show unique behaviors around the transition.
For our dataset, we show that a smaller partition of vertices is the main
contributor to the temporal evolution of the network. We suggest a driver
of the virality phase transition be the activity of central users, where the
physical quantity where we observe a changed behavior is the increase in the
total number of active nodes in the network. Through community detection,
we find that the relative size of the 10% largest clusters grows as the total
number of active vertices in the network grows. Moreover, we observed
tendencies of centralization of the conversations towards the peak of the
DW. However, we did not find sufficient indicators to attribute a substantial
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change in the velocity of the growth of the largest cluster to some critical
size of the largest cluster.

In the fields, Algorithms for Network Analysis and Complex
Network Theory, we build large scale interaction networks based on a
DW (see Section 2.2). To the best of our knowledge, this is not only the first
data set of this kind, but this thesis also presents the first examination of
interactions related to DWs on a societal scale.

Even though examining news spreading phenomena in interaction
networks is not entirely new, we introduce a new method for temporal slicing
interaction networks using the evolution of the size of the neighborhoods.
More explicitly, we introduce the idea of collective memory in temporal
interaction networks to track conversations of significant value across discrete
temporal slices. In particular, this thesis presents the theory and results for a
slicing method using a constant maximum neighbourhood size and introduces
the theoretical background for performing such partitioning using a vertex-
varying neighbourhood size.

Performing the entire set of community detection-related analyses with
three different algorithms; Louvain [2], Leiden [1], and Label Propagation [3]
gives us not only the opportunity to evaluate those for our specific use case
but even identify Label Propagation as the best fit for similar problems.
Given the relevance and increasing popularity of this topic, we assume
this finding is valuable for future work, as it is a method for optimizing
the communities found by unsupervised methods without the addition of
external supervision.

Lastly, in the field of Data Science, we extend an existing framework
for handling a large set of data containing information about user interaction
on Twitter. We filter the given set of statuses to produce a smaller dataset
containing only statuses relevant to the DW we are investigating, as well
as enriching the filtered data through thread completion. We deemed
the interactions through statuses as a more concrete indication of active
interaction than the act of users following each other. For example, one user
following another user that has posted a status connecting 5G to COVID-19
does not guarantee that the following user ever reads or interacts with the
content in the post. This realization leads us to implement a method for
modeling the interaction of users through an underlying network where the
vertices are statuses, and the edges are what we define as a contact (see
Section 3.1) between two statuses.

1.3 Limitations

The main limitation of the thesis is the uniqueness of the dataset. DWs are
very hard to identify while they are developing and often not recognized
before the real-world consequences are revealed, so catching a DW and
gathering information about it while it is happening is difficult. To the best
of our knowledge, this dataset is the first of its kind. The consequence is
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that it is impossible to generalize or confirm our statements by applying our
methods on different datasets. As the objective of this thesis is to provide a
fundamental basis for further exploration into the modeling and predictions
of DWs, generalizability is not our goal for the time being.

The main problem lies in the confirmation or rejection of our hypotheses.
There is no way of knowing if the tendencies we are observing in our data
are simply behaviours exclusive to this particular DW or if they point to
universal behaviors of DWs in general. Another shortcoming is the possible
incompleteness of the data. During the enrichment and thread completion
process, it was not possible to find all “child”-statuses not containing the
queried keywords. This means that not all our chains of conversations are
necessarily complete.

Another limitation comes from the new method we developed for slicing
the graph after contacts. We can not find other published research that
has done a similar slicing after the neighbourhood size procedure, so it is
impossible to compare our slices’ characteristics to other work. This limits
the understanding we have at this point about how to interpret the slices.

We only look into the largest clusters of the network and into the activity
of the most active nodes, which is a small search area, so there is a possibility
of other drivers than the ones we propose in this paper. This, as well as
catching other DWs to expand the set of available data, will have to be the
subject of future work on the problem.

We work with an undirected graph representation of the Twitter
interaction network underlying the DW. This limits our ability to
differentiate between sources and targets and forces us to use other attributes
of the network and former experience with the dynamics of conversations on
Twitter to make assumptions about the direction of the links between the
vertices. The reason behind choosing to work with an undirected graph is
that we always want to start exploring new ideas in the most general manner,
adding levels of complexity in parallel with the gain of knowledge about the
subject and slowly reaching more specific descriptions.

1.4 Outline

This thesis is further structured as follows.

Chapter II: Background and Related Work
We give a brief introduction to subjects like community detection algorithms,
centrality measures, phase transitions and Twitter. After reading this
chapter, the reader should have an understanding of

• What The 5G and COVID-19 Misinformation Event is.

• What separates misinformation from disinformation.

• What a Digital Wildfire is and why it can be so dangerous.

• What a network/graph is and what separates complex graphs like social
networks from random networks.
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• What Twitter is and what type of data we can acquire from the Twitter
API.

• What community detection is, and how the methods selected for this
thesis work.

• The difference between degree-, betweenness-, and closeness centrality.

In short, this chapter aims to provide the reader with the necessary
information and knowledge needed to understand the dataset and the
relevance of the research questions investigated in this paper.

Chapter III: Approach
In this chapter, we present original frameworks, the development of
our methods and models, as well as the mathematical formulations of
said methods. After reading this chapter, the reader should have an
understanding of

• The data-extraction process resulting in the dataset.

• The definition of a contact.

• The development of the underlying graph.

• The extraction of the different types of graph-slices.

• The difference in the networks produced by the three slicing methods.

• The definition of vertex activity.

This chapter provides a walk-through of how we apply methods to
investigate the problem and how the technique we developed for contact-
based slicing works. Thus, providing the information necessary for
reproducing the methods and for the reader to interpret the results.

Chapter IV: Experiments
In this chapter, we present the experiments done on the different sets of
slices produced. This includes metrics of the communities, vertex activity
measures, the graphs’ temporal development, and the correlation between
the evolution of the DW as a whole and the evolution of the communities.
After reading this chapter, the reader should have an understanding of

• The evolution of the DW in terms of the number of users and contacts.

• The outcome of the three community detection algorithms applied on
the graph in terms of cluster distribution and the evolution of the
largest clusters.

• What we deem the most plausible drivers of the DW in light of our
results.
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• What we argue is the preferred slicing method and community
detection algorithm for our dataset.

This chapter should clarify our results and how we interpret them in light
of the underlying theory and our hypotheses.

Chapter V: Conclusion
In the final chapter, we conclude the thesis by summarizing the main findings
in light of our hypotheses and research questions. Furthermore, we dedicate
a section to plans and ideas for future work predicting misinformation with
real-world consequences. After reading this chapter, the reader should
understand

• What our main findings and contributions are.

• The answers to our research questions.

• Our ideas for future work on the subject.
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Chapter 2

Background

The Background chapter covers the information necessary for a reader to
understand the experiments conducted in this thesis and their results. We
begin by defining terms related to misinformation spreading on an online
social network (OSN) and move on to introducing the Digital Wildfire (DW)
that our dataset contains, namely The 5G and COVID-19 Misinformation
Event. Moreover, we briefly introduce networks in general as well as some of
the subclasses of networks. From there, we provide an overview of Twitter,
the OSN we harvested our data from.

After this, we focus on the measures and methods we use to extract
information about the network. We cover some centrality measures and the
average nearest neighbour degree (ANND) before explaining the concept of
community detection. In this thesis, we apply three methods for community
detection; Leiden, Louvain, and Label Propagation. Lastly, we provide a
general introduction to phase transitions and percolation transitions.
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2.1 Types and Subtypes of Misinformation

In the age of the online society, the flow of information to the masses is
no longer restricted to news outlets and scholars. Online social networks
(OSNs) provide a stage for everyone to post nearly anything they want.
Looking at only Twitter, in 2020 there were, on average, 500 million tweets
posted daily [25]. With numbers of this magnitude, it is obvious that keeping
track of the content available to readers is futile. A user posting in an OSN
is both consumer and source, most likely not trained in fact-checking and
often only interested in sharing his or her thoughts. When compared to the
stream of information in the pre-internet age, the amount of content spread
on OSN daily combined with the lack of credibility of the sources has led
to a massive increase of false and biased information reaching the public.
While terms like misinformation and disinformation have been around for a
while, recently, new terms like fake news or digital wildfires have been used
to describe inaccurate information. This section aims to define the most
widely used terms related to the spread of false information.

MisinformationInformation

Disinformation

Digital Wildfire

Figure 2.1: Illustration showing the relationship between information and the
subtypes of misinformation. A digital wildfire can contain true information,
misinformation, and disinformation.

The definitions of information and misinformation vary widely between
sources and are often context-specific. We identified what we believe to be
the most commonly accepted definitions of these terms by exploring sources
such as Wikipedia and the Merriam-Webster dictionary, which are the ones
we will be going by in this thesis. Figure 2.1 illustrates the relationship
between information types according to our definitions.

Information

When referencing information, we go by the following definition

Definition 2.1.1 (Information). The communication of true statements
between sources.

12



Misinformation

We adopt the following definition of misinformation

Definition 2.1.2 (Misinformation). Misinformation is false, inaccurate, or
misleading information that is communicated regardless of an intention to
deceive [26] .

The above definition relies on information being something true itself.
This might not be the appropriate definition of information for all intents
and purposes, but we go by the stated one for this paper.

Disinformation

Disinformation is closely tied to misinformation but differs from it by having
the intention of deceiving [27]. We adopt the definition

Definition 2.1.3 (Disinformation). Misinformation that is deliberately used
to deceive.

Digital Wildfires

The term Digital Wildfire (DW) is used to describe the phenomena of rapid
and uncontrolled spreading of online misinformation [11]. In this thesis, we
define it more specifically as

Definition 2.1.4 (Digital Wildfires). Social media events in which inaccu-
rate, harmful or false content spreads rapidly and broadly, causing significant
harm and real-world implications.

As displayed in Figure 2.1, a DW can contain all of the subtypes of
information defined above. Some people believe in the inaccurate content
they are spreading, while others spread with the intent of deceiving. A DW
can also contain information that is not misinformation or disinformation.
Imagine, for example, a situation where fact-checkers post clarifying facts as
an attempt to stop the spread of a DW. The statement could potentially
end up introducing a new audience to the DW. There is no guarantee that
everyone in this audience believes in the fact-checkers, thus possibly leading
to more people believing in the misinformation itself.

Fake News

There is no official definition of the term fake news, but usually, it is used to
describe inaccurate information. In the article The science of fake news [28],
David Lazer defines it as “Fabricated information that mimics news media
content in form but not in organizational process or intent”. The term fake
news has long been up for high debate, especially since the presidency of
Donald Trump. During this time, the term was thrown around very loosely
and used to describe one man’s opinions instead of objective facts. Therefore,
we refrain from using the term “fake news” further in this thesis. Instead, we
rely on more specific terms to define the types of information we encounter.
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Conspiracy Theories

According to the Merriam-Webster dictionary (see Definition 2.1.5), conspir-
acy theories are centered around the idea that some people of power, usually
the government or a large, influential organization, make up events or ex-
planations about something to hide/cover up something else or derail the
public from the truth.

Definition 2.1.5 (Conspiracy Theory). A false theory that explains an
event or set of circumstances as the result of a secret plot by usually powerful
conspirators [29].

2.2 The 5G and COVID-19 Misinformation Event

As shown in previous research [30], soon after the COVID-19 outbreak in
Wuhan, China, a series of tweets surfaced on Twitter containing insinuations
of a possible link between COVID-19 and 5G wireless technology. The first
tweet was posted in the early stage of the pandemic before the virus became
an international problem. Initially, the conspiracy did not seem to gain much
attraction. It took many weeks before real-world consequences occurred as a
series of arson attacks on 5G towers in multiple countries, including the
UK [31]. Such spreading of online misinformation leading to real-world
implications is known as a Digital Wildfire (DW) (see Definition 2.1.4)
and has been ranked as one of the top global risks in the 21 century by
the World Economic Forum[11]. In this thesis, The 5G and COVID-19
Misinformation Event is used as an umbrella term for all communication
surrounding the connection between the 5G-network and the COVID-19
pandemic and all real-world implications and consequences of the spreading
of such information.

Before the Event

To pinpoint the start of the DW is difficult as there are multiple narratives,
and we can only rely on the first tweet in our dataset mentioning both 5G and
corona virus as a definite starting point. However, there could be an earlier
linking between 5G and COVID-19 on other online social network (OSN) or
in real-life conversations.

When investigating the dataset, we came across an entire spectrum of
conspiracy narratives claiming a causality between 5G radiation and the
coronavirus. Even though these narratives seem to be as diverse as the
individuals spreading them, they share the idea that the 5G technology is
dangerous, can hurt people, and thus should not be implemented. In the
following, we list a subsample of different conspiracies we came across

• The 5G network, or more specifically the radiation, is weakening your
immune system and so not directly making you sick but rather making
you less equipped to deal with viral or bacterial infections.
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• The radiation from 5G antennas is directly harmful, even deadly, and
the government is using a made-up pandemic, COVID-19, as a cover-
up.

• The vaccine for the COVID-19 virus is a microchip that enables the
government to do mind control on people through 5G network devices.

One can argue that even if it were possible to find the very first statement
linking 5G and COVID-19, this would not necessarily mark the start of the
DW. In fact, a later tweet might have been the true catalyst that turned the
collection of these separate conspiracies into a DW. This line of thinking is
speculative at best and thus not a white rabbit we continue following.

During & After the Event

Before the end of January 2020, 685 tweets and 1,081 retweets containing
both keywords referencing COVID-19 and 5G had been posted on Twitter.
Throughout January and February 2020, we observed a slow growth in
daily tweets insinuating a connection between COVID-19 and 5G, as well
as content related to the DW slowly beginning to gain some traction on
other platforms such as YouTube. When the virus began to take a foothold
in Europe in March, the global media coverage turned its focus to the
pandemic, and the online spread of the DW picked up its pace. This resulted
in four times as many tweets on the 5G-Corona conspiracy from late March
to early April, which was the period right before arson attacks on 5G-related
telecommunication equipment occurred and the harassment of technicians.
The first series of attacks happened in the UK, the Netherlands and New
Zealand during the weekend of April 3, 2020. Multiple more followed in the
week after, and later some occurred in Canada as well. By July 2, 2020, there
were reports of 273 cases of clashes between people who believed in some
version of the conspiracy, as well as 121 reports on arson and other types of
destruction [32], including the detainment of 8 telecommunication workers in
Peru. In April of 2020, Twitter banned statuses and users promoting attacks
on 5G infrastructure, and the spreading of content related to the connection
seemed to halt. However, even as late as the first quarter of 2021, suspected
cases of arson in Africa and Canada [33, 34] started to occur.

January

ATTACKSJanuary 21, 
2020

First Tweet

Number of Tweets 
slowly increased to 
1081

Influence

Reconstruction

End of slow 
increase with 
rise of covid 
cases

Peak of media 
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March 20 and March 
25

Youtube 
Videos 
appeared

February March April

Series of 
Youtube Videos 
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Figure 2.2: Most significant events that occurred during the course of the
COVID-19 and 5G Misinformation event that transpired online in 2020.
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2.3 Networks

A graph or network represents connections between a set of units, often
denoted vertices, where the interrelations between the vertices are called
edges. Formally, a static network G defined by a set of vertices V and edges
E can be defined as in Definition 2.1.

G = (V,E) with E ⊆ V × V (2.1)

In this thesis, we use networks mainly to model the contact between users
within the OSN Twitter. Here, vertices represent users and have multiple
attributes. The edges represent the connections, i.e, contact between two
users through statuses and can like vertices have attributes such as being
weighted or directed after type of interaction. The following are examples
of different types of networks based on their edges where the vertices are
twitter users [35]:

• Weighted and Directed - Edges points to/from users based on which
one is following the other and are weighted after how many interactions
(i.e, replies/quotes/retweets) there are between them.

• Unweighted and Directed - Edges points to/from users based on
which one is following the other, but they are not weighted after
number of interactions.

• Weighted and Undirected - Edges have no direction and only
represents a link between users, i.e, there is some connection but it
does not represent who is is following who, and are weighted after
how many interactions (i.e, replies/quotes/retweets) there are between
them.

• Unweighted and Undirected - Edges have no direction and only
represents a link between users, i.e, there is some connection but it
does not represent who is is following who, and they are not weighted
after number of interactions.

All of the examples above are illustrated in Figure 2.3. The edges of a
network are often encoded in an adjacency matrix E, where Ei,j = ei,j = 1
means that there is an edge connecting vertex i to vertex j and Ei,j = ei,j = 0
means there is not. For undirected graphs the adjacency matrix is symmetric.

Social Networks

Social networks are usually defined by their vertices representing individuals
and their edges representing the connections in between them [36]. These
networks are not simple networks with random traits and are therefore
categorized as complex networks. Complex networks display characteristics
not found in random networks and contain attributes such as community
structures, being built up of a multitude of different subgraphs, dynamically
evolving over time, and other non-random but not entirely systematic
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Figure 2.3: Illustration showing different types of graphs in terms of edge
properties. The thickness of the edges represent weight and the arrowheads
represent direction.

features [37, 38]. Examples of other network classes that fall under the
category of complex networks are scale free [39] models and small-world [40]
networks.

Temporal Networks

Temporal networks is a term used to describe a class of networks whose
edges, in some way or another, vary with time [41]. Sometimes this means
that you have edges that are always present in the network, but are turned
on an off as a function of time. When they are off, information cannot travel
from one vertex to another vertex across that edge. In networks that are
fundamentally temporal themselves, like a social network where new users
are continuously created and old users make new connections on a daily
basis, new vertices and edges pop into existence over time. In other words,
a temporal network can have static vertices and temporal edges, or both
temporal vertices and temporal edges. Many types of networks fall under
the category of temporal networks, ranging from biological networks, like a
disease spreading in a population or the neural networks of the human brain,
to technological networks, i.e., the Internet or computer clusters. Formally,
we can define a temporal network with static vertices as

G = (V↓, E0, ..., ET ),
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where Ei represents the subset of all edges turned on in the network at time
i.

2.4 Twitter: an Overview

Twitter is an OSN that revolves around the sharing of status updates known
as tweets. A tweet can contain up to 280 characters and may include images,
videos and links, which essentially is a form of “micro-blogging”. There are
two privacy settings on Twitter, public and protected. If a user’s privacy
settings are set to public, their tweets can be viewed by anyone, even by
people who do not have Twitter users themselves. If it is protected, only
accepted followers can see content produced by the corresponding user. It
is important to know that there are several ways of sharing information on
Twitter (see Table 2.1).

Table 2.1: This table shows an overview of the most important types of
Twitter statuses.

Tweet A new post
Reply A comment to an already existing status
Retweet Re-sharing an already existing status
Quote A retweet with either additional comments

or modifications from the original

All of the types listed in table 2.1 are recognized as their own individual
tweet objects and are collectively referenced as statuses in this paper. It
is worth mentioning that users can also “like” another user’s status, but
for the remainder of this thesis, a like will not be regarded as a contact
(see Section 3.1) between users. In more detail, a status contains several
attributes [42] where the most important related to our research are shown
in Table 2.2

Table 2.2: Examples of the most central attributes to Twitter statuses.

id Unique integer identifier of the tweet
text The text content of the tweet
user The user in its entirety
retweeted_status Representation of parent tweet

All reply-, retweet-, and quote-objects contain the id of the status they
are referencing. This attribute makes it possible to find the parent status
of a retweet, quote, etc. However, child statuses, i.e., statuses posted later
than the status in question, are not attainable.
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Accessing Twitter’s Data

Due to Twitter’s terms of service, we are not allowed to obtain data directly
from Twitter’s web interface. Instead, we use Twitter’s Developer-API1

for data access. The data collection related to the COVID-19 pandemic
was done during the UMOD project2 at the Simula Research Laboratory.
Since the amount of data that can be collected with the help of Twitter’s
API is limited, at least when used conventionally, we applied and extended
particular strategies initially developed during the UMOD project for our
data collection [43–45]. This approach allowed data collection in sufficient
amounts [22, 46].

When searching for tweets containing specific keywords, Twitter’s Search-
API only allows access to tweets not older than two weeks. By the very
nature of a DW, this circumstance makes it difficult to obtain the required
data as real-world harm might only be evident after the corresponding
misinformation event has developed for more than two weeks. The simple
solution to this problem is a proverbial search for a needle in a haystack, in
which the haystack takes the form of a massive database that has to be built
beforehand. In our case, this resulted in a massive amount of data related
to COVID-19 in general, which “coincidentally” also contained data related
to the COVID-19 & 5G DW (see Section 2.2).

Twitter’s underlying Networks

Two main categories of networks are underlying Twitter’s database. First,
the network reflecting a user’s decision to follow another user’s content,
and second, the network reflecting user interactions. In the following, we
introduce both categories briefly.

Follower Network

The sum of all follower connections on Twitter makes up the Twitter follower
network, in which vertices represent users and edges represent the act of
users following each other. There can be several reasons for one user to start
following another; they can, for example, be real-life friends, one can be a fan
of another high-profile user, or they can have mutual interests which they
would like to discuss. Another reason might be that Twitter suggests new
users to follow through a recommender algorithm based on a user’s interest,
i.e., what users they are already following. Something which can influence
the “validity” of the connections is users who follow as many other random
users as possible to gain followers.

Interaction Networks

Interaction networks are built from the interactions between users, like
retweets, quotes, and replies (see Table 2.1). Whereas in follower networks,

1At the time of data collection, Twitter had not released its API v2, so v1 was used.
Twitter search API: https://bit.ly/3KOGqRS

2UMOD: Understanding and Monitoring Digital Wildfires.
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the edges represent a user’s intention to subscribe to the entirety of another
user’s content, in interaction networks, they represent interactions. The
vertices still represent users. The act of interacting allows for the assumption
that one user has in one way or another been affected by the other user’s
status through its content. This can not be assumed by a simple follow in
the follower network, as it does not indicate what specific content reaches
the other user. The confirmation of interaction through content related to
the DWs is the reason why we, in this thesis, use interaction networks and
not the follower networks. Looking at the follower network of each user that
has contributed to the conversation about the 5G-COVID-19 connection can
provide other types of information about the contributors, but that is beyond
the scope of this thesis.

2.5 Centrality Measures

We use metrics to quantify the qualities of the networks created from
the dataset, some of which are centrality measures. Centrality measures
provide insight into the significance of individual vertices in terms of network
placement, i.e., the network topology. The position of a vertex says a great
deal about the amount of information that potentially flows from, to or
through a vertex and is, therefore, an indication of the potential “power” a
vertex holds in the network.

Degree Centrality

Degree centrality [47] is the most simple form of centrality measurement. It
is simply the sum of all edges connected to a vertex and can be formulated
mathematically as

Cdeg(i) =
∑

i,j∈N (i)

ej , (2.2)

where N (i) is the neighbourhood of vertex i (see Eq. 3.4 for formal definition
of neighbourhood), or in terms of the adjacency matrix (see Section 2.3)

Cdeg(i) =

N∑
j=1

Ai,j , (2.3)

where N is the number of vertices in the graph and Ai,j is an element of
the adjacency matrix A. Here, Ai,j takes the value 1 if there exists an edge
between vertices i and j and 0 if not. For directed networks, we can calculate
the degree centrality for both inbound and outbound edges. Moreover, if the
edges of the network are weighted, the degree centrality must also account for
those. However, since we only consider undirected and unweighted networks
for the remainder of this thesis, we present the degree centrality as the sum
of all edges adjacent to a vertex.
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V1 V2 V4

 V3

Figure 2.4: Simple example of an undirected/unweighted network with
N = 4 vertices and M = 4 edges.

Betweenness Centrality

Another centrality measure considers how often a vertex lies on the shortest
path between other vertices. For a vertex i on the shortest path between
vertices j and k, any information traveling between j and k would first
have to pass through i. This means that vertices with a high betweenness
centrality, i.e., a vertex lying on many of the shortest paths between other
pairs of vertices, will have a lot of information traveling through it. In many
cases, this also means that removing such nodes will be highly disruptive to
the flow of information in the network. There exist multiple variations of
how betweenness centrality is defined. However, for this thesis, we will go
off the definition proposed by Ulrik Brandes in the article On variants of
shortest-path betweenness centrality and their generic computation[48]. We
define the number of shortest paths (there can be more than one of equal
length) between two vertices j and k as σ(j, k) as well as a variable σ(j, k|i)
which is the number of occurrences where a vertex i 6= j, k lies on a shortest
path between them. If j = k then the number of shortest paths between them
are one, σ(j, k) = 1, but no other vertex can lie on that path so σ(j, k|i) = 0.
We get the betweenness centrality of a vertex i by going over all other pairs
of vertices and finding the number of times i lies on a shortest path between
the pairs relative to the number of shortest paths between them.

CB(i) =
∑
j,k∈V

σ(j, k|i)
σ(j, k)

. (2.4)

Closeness Centrality

The closeness centrality of a vertex is the inverse of the sum of all distances
to all other vertices in the network and can be calculated as

Cc(i) =
1∑N

j=1 di,j
. (2.5)

We define distance di,j as the shortest path between to vertices i, j in
terms of number of edges. See Figure 2.4 for an example. Vertex v2 has
distances d2,1 = d2,3 = d2,4 = 1 which gives a closeness measure of Cc(2) = 1

3 .
Note that there are two paths from v2 to v4, but the distance used in the
closeness centrality measure is always the shortest.
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In other definitions of closeness centrality, it is normalized by multiplying
with N − 1 to allow for comparing between graphs of different sizes. A high
closeness score indicates that the vertex in question is closely related to the
other vertices of the network, so the distance information would have to
travel to another vertex is short. This could indicate that a vertex with a
high Cc score can spread information more efficiently than one with a low Cc
score.

2.6 Degree Distribution & Assortativity

When looking into how vertices connect in a network, we often find that
vertices are more likely to connect to other vertices with similar attributes,
something which is known as network homophily [49]. These attributes
can be anything from age or gender to geographic location or if you are a
Gryffindor or a Slytherin. Especially when concerned with social networks,
where the vertices represent people interacting with each other, there can
very well be factors not explicitly represented in the network structure that
are part of the underlying reasons why the network is as it is. In other words,
we look at the structure as a symptom we can use to work our way back to
a potential cause.

Average Nearest Neighbour Degree

Average degree connectivity tells us something about the relationship
between the vertices of the network who connect [50]. It can provide insight
into how connected the neighbourhoods of vertices with certain degrees are.
Do vertices with high degree centrality usually have neighbours with high of
low degree centrality?

Let us begin by looking at a vertex i. The average neighbourhood size
of the neighbours of vertex i can be calculated as

K(i) =
1

Cdeg(i)
∑

j∈N (i)

Cdeg(j), (2.6)

whereN (i) is the neighbourhood of vertex i or by using the adjacency matrix
as

K(i) =
1

Cdeg(i)

N∑
j=1

Ai,jCdeg(j). (2.7)

This tells us something about how connected the vertices in the
neighbourhood of vertex i are and is called the average degree connectivity
of a node. What is more interesting is how well connected, on average,
the neighbours of any vertex with a certain degree centrality Cdeg = k are.
Calculating K(i) for all vertices in a network we can find the average nearest
neighbour degree (ANND) [51] of all vertices with degree k as the mean of
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K(i) for all Cdeg(i) = k, that is to say we get a function K(k)

K(k) =
1∣∣∣Ṽ ∣∣∣
∑
i∈Ṽ

K(i), Ṽ = {v | Cdeg(v) = k}. (2.8)

This function is sometimes called the degree correlation function or
nearest neighbor degree [50] and can be also be written in terms of probability

K(k) =
∑
k′

k′P (k′|k), (2.9)

where P (k′|k) is the conditional probability that a vertex with degree
Cdeg = k has a vertex in its neighbourhood with degree Cdeg = k′ [50].
This function can be linearly fit to examine the correlation between degree
centrality of a vertex and the degree centrality of its neighbours.

Assortativity

One attribute where network homophily does not necessarily apply is the
degree of a vertex in relation to its average nearest neighbour degree.
Assortativity is a measure defined the quantify a networks tendency of
homophily [17]. A network is deemed assortative in terms of degree
correlation if the ANND (see Eq. 2.8) grows with larger k, or in other
words well connected vertices are more likely to be connected to other
well connected vertices. For a disassortative network the average degree
connectivity decreases with higher values of k, that is to say that well
connected vertices are on average connected to sparsely connected vertices
and visa versa. For neutral networks there are no correlation between the
two [50]. This degree-degree correlation is the most common attribute to use
when looking at the assortativity of a network, but one could in principle
use any vertex attribute whom in turn could yield a very varying range
of assortativity scores [52]. A study done on degree correlation in social
networks report them as typically assortative in terms of degree correlation,
while non-social networks show a tendency of being disassortative [53]. To
determine whether a network is assortative or disassortative one can calculate
the mean nearest neighbour degree for all vertices of degree k by looping
through the network and calculating the corresponding ANND to each k,
or as this is a measure of correlation between two variables, we can use the
Pearson correlation coefficient. As calculating the corresponding ANND to
each k provides us with a broader view of the networks tendencies than the
single value given by the Pearson correlation coefficient, we will in this thesis
be implementing the former.
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2.7 Community Detection in Networks

Community detection might sound like something inherently social science,
but it has shown to be of interest to natural sciences, including physics. Many
different networks, ranging from natural to social, at some point divide into
communities. In network theory, a community is usually characterized as a
group of vertices sparsely connected to the rest of the network but densely
connected to each other. However, there is no single agreed-upon definition
in the field. In this thesis, we alternate between the terms community and
cluster, as the latter is a more general expression for an arbitrary network
partitioning. The very simplest form of a community is a “clique”, where all
pairs of vertices are directly connected through an edge so that all vertices
in the community are directly related [3]. A popular method to identify and
distinguish the clusters is by optimizing the modularity of the network. In
short, modularity is a measure of how connected the clusters of a network
are (see Definition 2.7.1), and by maximizing it, we can gain insight into the
clusters of a network.

One of the downsides of traditional algorithms for modularity maximiza-
tion is that they are computationally costly. One widely used method is sim-
ulated annealing, a method first introduced in 1983 by the computer scientist
Scott Kirkpatrick [54]. This method is an adaptation of the Metropolis-
Hastings algorithm for Monte Carlo sampling [55]. Simulated annealing
becomes too slow for large-scale networks due to the computational cost.
Thus, new methods are needed. In the paper Modularity and community
structure in networks [19] the physicist M.E.J Newman describes a method
that makes use of the eigenvectors of what he calls “the modularity matrix”,
which is the similarity matrix of the network minus the matrix where the
elements are the expected number of edges between the vertices if the net-
work was a random network. This approach reduces community detection
to a spectral clustering problem instead, which for those familiar with linear
algebra and eigenvalue problems, can be used to reduce the dimensionality
of the problem before actually beginning with the clustering.

Another take on the problem comes from Liang Yang et. al in the paper
Modularity Based Community Detection with Deep Learning [56] where the
authors propose the use of a non-linear model in deep neural networks to
build a new algorithm for cluster detection, optimized through the use of
stochastic gradient descent.

What does all of this tell us about the relevance to the field of physics?
Reading through this section, a physicist should have recognized many
familiar terms. Monte Carlo simulations with Metropolis sampling is
a widely used technique in thermodynamics and modeling of quantum
mechanical systems and is often already introduced to undergraduate
students of physics through the Ising Model [57]. Eigenvalue problems are
common to many parts of physics, from finding the energy states of a system
through the eigenvalues of the Hamiltonian in quantum mechanics to solving
the partial differential equations used for buckling analyses of structures
in classical physics. All methods and models mentioned above have been
underlying factors in developing cluster detection methods, and physicists
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often develop the methods themselves. For the eager reader, we recommend
the paper Community detection in graphs [20] where physicist and professor
in complex systems Santo Fortunato breaks down the concept of community
detection in graphs “with a special focus on techniques designed by statistical
physicists”.

After reading this section, it should be clear that there exist many
methods of community detection. In the following, we introduce the three
different clustering methods implemented during this thesis, Louvain [2],
Leiden [1], and Label Propagation [3]. The first two are modularity
based, which is commonly agreed upon as the go-to measure for community
detection, while Label Propagation is chosen as a safeguard.

2.7.1 Modularity-based Algorithms

When talking about cluster detection methods, an important term is modu-
larity. In his paper Modularity and community structures in networks [19],
M.E.J Newman defines modularity as

Definition 2.7.1 (Modularity). The modularity is, up to a multiplicative
constant, the number of edges falling within groups minus the expected
number in an equivalent network with edges placed randomly.

There are multiple ways of calculating the modularity of a network.
However, in this thesis, we present the method introduced in the book
Networks: An Introduction by M.E.J Newman [18] as this is the method we
implement. We remember that the number of edges connecting to a vertex
i, or the degree centrality of the vertex Cdeg(vi) := di , is calculated as in
Eq. 2.3. Assume that we are working with an undirected, complex network
G with N vertices, M edges and an adjacency matrix A, for which we would
like to calculate the modularity. We introduce some grouping on the vertices
of the network, either that all vertices belong to their own unique group or
that they are grouped in any other way. We mark the vertices with a label
ck, determining which group they belong to, where k ∈ N+ with k ≤ N
is the group index. Imagine an equivalent random network GR, we look at
vertices i and j which have corresponding degrees di and dj . There are two
ends to an edge, which means that for a network with M edges, there are
2M edge ends. Now, if we pick a random edge end incident to vertex i in
GR, the probability that the other end of the edge is connected to vertex
j is the degree of vertex j divided by the number of total edge ends in the
network, i.e.,

p =
dj

2M
, (2.10)

which applies for all j ∈ [1, N ]. Since there are di possible edge ends
connected to vertex i there are di ways of an edge connecting edge ends
from i to j. This translates to the following expected value

E[Edges connecting i, j] =
didj
2M

. (2.11)

25



We expand on that by introducing δ(ci, cj), the Kronecker delta, which
is 1 if vertices i and j belong to the same group and 0 if not, so that we can
write the expected value of edges connecting i to j in case they belong to
the same group as

didj
2M

δ(ci, cj). (2.12)

Iterating over all the vertices, without counting edges twice, we arrive at
the total number of expected edges between all pairs of vertices belonging
to the same group in the network

1

2

∑
i,j

didj
2M

δ(ci, cj). (2.13)

Now, as we know the expected number of edges connecting pairs of
vertices in the same group in GR, we see from Definition 2.7.1 that we need
to find the number of actual edges connecting vertices in the same group in
G. Since we have the adjacency matrix A, which contains all edges in G, we
can sum over all its elements, making sure to divide by 2 to avoid counting
edges twice, while again imposing δ(ci, cj) to arrive at our expression

1

2

∑
i,j

Ai,jδ(ci, cj). (2.14)

To find the difference between expected and actual edges we subtract
eq.2.13 from 2.14 which results in

1

2

∑
i,j

[
Ai,j −

didj
2M

]
δ(ci, cj). (2.15)

We scale the sum by the number of total edges in the network M to get
the fraction of such internally connecting edges in groups

Q =
1

2M

∑
i,j

[
Ai,j −

didj
2M

]
δ(ci, cj), (2.16)

which is the final equation for the modularity Q of the network G. Suppose
there are more edges between vertices of the same groups of G than expected
from GR. In that case, Q will be positive with a maximum value of 1 (all the
edges of the network are between vertices belonging to the same group, so
ci is equal to cj for all i, j when Ai,j = 1). If there are fewer edges between
vertices of the same groups of G than expected from GR, Q will be negative.

For example, one could imagine the network built up of all the students
attending the University of Oslo. The students of physics, social sciences,
theology, etc., at UiO have dense connections to other students in their own
fields but sparse connections to students in other fields. If we rephrase the
groups of students belonging to a particular field as a student cluster, this
would likely indicate that the entire student network of UiO, built up of all
its attending students, has a positive modularity score.
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The Louvain Method

The Louvain method [2] is an unsupervised method for modularity
optimization. It is unsupervised as one does not need to know the number
of clusters nor the cluster sizes beforehand. Assume we have a network of
N vertices. The first step of the Louvain method is to assign a cluster to
each vertex so that we start off with N clusters in our network. We begin
by removing a vertex i from one cluster and placing it in another cluster
belonging to a neighbouring vertex j. Then, we calculate the modularity to
see if our move has increased it. After looking at all possible neighbouring
clusters, we move vertex i to the cluster that maximized the modularity. The
cluster maximizing the modularity could be the cluster the vertex originated
from; thus, staying put is an allowed move. We then repeat the process
for all the vertices in the network until reaching a local maximum where
moving a vertex no longer increases the modularity score. Phase one of the
method is now concluded. In phase two, we construct a new network where
the vertices represent the clusters found in phase one. In the new network,
the edges between the vertices are weighted as the sum of the weight of all
edges connecting the clusters from phase one. Edges linking vertices in the
clusters are represented by self-loops in the new network. They are weighed
as the sum of all internal edges in the clusters from phase one.

We now have a new network where we can reapply phase one. These two
phases can be repeated until we find the best possible grouping of clusters
to maximize the modularity of the network. In the experiments conducted
in this thesis, we will only use phase one of the Louvain algorithm, not
constructing new networks from the partitions we find. This is because we are
interested in tracking the evolution of the communities across time through
re-identifying their members, thus making the memory of the original vertices
important.

The Louvain method is an example of greedy optimization of the
modularity, which, compared to methods like simulated annealing or spectral
optimization, has shown to provide less accuracy [20].

The Leiden Method

The Leiden method [1] is an improvement of the Louvain method. It was
developed after experiments showed that the Louvain method could, at
times, yield clusters that were poorly connected or, in other cases, was
shown to disconnect clusters altogether. An example is that the Louvain
algorithm allows for “bridging”-vertices, i.e., vertices that are central to the
connection of vertices in its old cluster, to be moved into a new cluster and
disconnect the old cluster. This unfortunate move can lead to other vertices
from the old cluster being moved into new clusters and the original cluster
being lost. As the goal is to maximize the modularity, when taking no extra
precautions, the Louvain method tends to lose smaller clusters to larger ones,
yielding clusters that have “eaten” smaller clusters that might contain useful
information about the network.

The idea behind the Leiden algorithm is to ensure convergence to a
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Figure 2.5: This figure illustrates the different phases of the Louvain
method. During phase one, vertices are moved to new clusters to maximize
modularity. Phase two constructs a new network from the clusters of phase
one. Figure borrowed from Fast unfolding of communities in large networks,
Vincent D Blondel et al. [2].

network where all clusters are locally optimized with regard to modularity.
This is achieved by introducing an additional step to the Louvain method.
We start similarly to the Louvain method, moving vertices to neighbouring
clusters while calculating modularity. However, the difference is that the
Leiden method uses a fast local move procedure.

In random order, all the vertices in the network are put in a queue.
The vertex at the start of the queue is then removed, and the modularity
score is evaluated for moving the vertex to any of its neighbouring clusters.
After moving a vertex to the cluster with the greatest positive change in
modularity, we put all the vertices whose neighbourhood changed to the end
of the queue. After all vertices have been visited and removed from the queue
once, only affected vertices remain in the queue. This streamlines phase one
by avoiding unnecessary testing and moving vertices, making phase one faster
than in the Louvain method.

Before initiating phase two, an additional phase is introduced to refine
the partition P found during phase one. In this phase the goal is to identify
a partition Prefined which is a refinement of P . Here, Prefined is initially
set to be a network where all the vertices from the underlying network are
clusters on their own. From here, the algorithm performs a version of phase
on again. However, instead of assigning a vertex to the neighbouring cluster
with the largest increase in modularity, it can be randomly assigned to any
neighbouring cluster with an increase in modularity. The larger the increase,
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the larger the probability, so it is still likely to be moved to the cluster with
the highest increase in modularity, but not definitely. This often leads to
clusters in P splitting into more clusters in Prefined. In other words, the
refinement phase allows for a broader exploration of the partition space. As
with the Louvain algorithm, we will not be initiating phase two of the Leiden
algorithm. We will only make use of phase one and the refinement phase.

2.7.2 Label Propagation Algorithm

In this thesis, we also use a label propagation algorithm for community
detection proposed in Near linear time algorithm to detect community
structures in large-scale networks [3]. We again imagine a network consisting
of N vertices and M edges. The first step is to initialize all vertices with a
unique label signifying which community they belong to. At the beginning of
iteration 1, there are N unique labels. Then, we start propagating through
the network’s vertices, letting each vertex take on the label most of its
neighbours have. This updating can happen one of two ways

• Synchronous updating: A vertex at iteration t takes on the label most
common among its neighbours at iteration t− 1.

• Asynchronous updating: A vertex at iteration t takes on the label
most common among its neighbours at iteration t, whereof some have
already been updated in iteration t and some have not.

The challenge with synchronous updating is that if there exists bipartite3

subgraphs in the network, the label updating can begin to oscillate. In other
words, the vertices jump back and forth between two labels in subsequent
iterations resulting in a loop. If the graph contains vertices of degree 1, i.e.,
with only one neighbour, which by definition is a bipartite subgraph, this
immediately becomes a problem. As a consequence of this, asynchronous
updating is used.

An important aspect of the algorithm is that the vertices are queued
randomly for updating at each iteration. As the propagation goes on,
there will form more and more groups of vertices that agree upon a label,
expanding in members up until some point. The number of unique labels
declines over the iterations until reaching the number of final communities.
There is a possibility that vertices whose neighbours have two equally
popular labels exist, resulting in the vertices bouncing back and forth
between two communities forever. Thus, the breaking point of the algorithm
cannot be when all vertices stop changing labels. Instead, the algorithm
stops when all vertices have one of the labels belonging to the maximum
of its neighbors. When the process is finished, the vertices are put into
communities with the other vertices that share their label. All vertices
sharing a unique label make up one community, and the final partitioning is
then guaranteed to fulfill the following criteria

3Bipartite means that all the vertices can be divided into two independent and disjoint
sets where all edges connect a vertex from set 1 to a vertex in set 2 [58].
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• No single vertex can belong to more than one community (disjoint
communities).

• A vertex with label Li has more (or equally many) neighbours with
label Li than neighbours with label Lj for all j 6= i.

These communities are very similar to the definition of strong commu-
nities proposed in the paper Defining and identifying communities in net-
works [59]. The main difference is that this algorithm results in communities
with the possibility of a vertex with label Li having more or equally many
neighbours with label Li as neighbours with label Lj whereas for strong
communities, a vertex with label Li has strictly more neighbours with label
Li.

There are multiple solutions as nothing is being maximized or minimized
to determine the algorithm’s stopping point. An example is if one has two
different solutions and relabels the vertices so that all vertices that had a
label La in solution 1 and label Lb in solution 2 are given the same label
Lc. Then one can repeat the iterative process over the labels, receiving yet
another solution which can again be aggravated with the formerly aggravated
solution so that the process can be repeated.

Note that as long as all vertices are initialized with unique labels at
the beginning of the algorithm, the algorithm is unsupervised. Another
noteworthy aspect of the algorithm is that the average time for each iteration
goes as O(M), and for homogeneous networks (no community structures),
the algorithm can result in one single community.

2.8 Phase Transitions

To put it simply, a phase transition is a change of state of some variable
of a system. The most known phase transition happens in almost every
household daily, the change in state of water from liquid to gas through
boiling. When a sufficient amount of energy is added to the system, and
the liquid water reaches its boiling point of 100 degrees Celsius, the water
undergoes a non-continuous phase transition, or what is known as a first-
order phase transition [60]. One might assume that it is continuous, as most
have experienced that the entire pot of liquid water does not spontaneously
turn to vapor but rather, over time, evaporates. The quality that determines
if the transition is of a first-order or high-order (continuous) is the change of
state. When a water molecule reaches a temperature of 100C, it immediately
goes from liquid to gas, so the transition is not continuous. The same
goes for liquid water freezing to solid water, more commonly known as
ice, at 0 degrees Celsius. The boiling- or freezing point of water is more
known as the critical temperature of the system in relation to the phase
transition. Such critical quantities are the points that, when reached by the
driver of the phase transition (temperature for water), the change of state
occurs, either continuously or abruptly, depending on the system. Another
phase transition, famous to at least physicists, is the magnetization of the
Ising model. This phase transition is also driven by temperature, where
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we observe that the spontaneous magnetization per spin is not equal to 0
(can be either positive or negative depending on the direction of the spin)
for temperatures below the critical temperature, T < Tc, and equal to 0
for temperatures greater than Tc. This transition is of second-order, as
the magnetization decreases while the material is heated before reaching
zero at Tc, thus not happening abruptly. One of the more interesting
qualities of phase transitions are critical phenomena, which are phenomena
occurring close to high-order phase transitions [61]. This often entails
systems exhibiting particular behaviours around critical points, sometimes
enabling us to identify a phase transition in a system before it happens.

Percolation Transitions

Let us introduce a 2-dimensional lattice where all states are occupied. The
edges are present with probability p or absent with probability 1−p. Here, a
cluster is defined as all nearest-neighbour states, that is to say, all states
connected through an edge. A percolating cluster is defined, for the 2-
dimensional case, as a cluster spanning either top to bottom or left to
right in the lattice. The critical probability for such a cluster existing in
a lattice is called the percolation threshold, pc. This threshold is the value of
p where an infinite cluster first appears in an infinite lattice [61], and it is the
point at which a percolation transition occurs. This percolation transition
is commonly known as “bond percolation”, but there exists other percolation
transitions such as “site percolation” [15]. From this concept, parallels can
be drawn to network theory. Imagine a critical probability pc where for
p < pc a network is made up of many smaller and isolated clusters, and for
p > pc, a gigantic cluster spanning the entire network emerges. This idea is
very similar to a bond percolation transition in a lattice, but instead of only
demanding a cluster connecting two opposite sides of a lattice, we demand a
cluster where starting at any vertex, all other vertices can be reached. This
is the same as achieving a probability of a vertex belonging to the infinite
cluster equal to 1 [15].
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Chapter 3

Approach

The main focus of our approach chapter is to thoroughly introduce the
reader to the methods developed for this thesis. This includes clarification
of the process of data acquisition and how we filter and enrich the dataset.
Moreover, we explain the graph-building process, how we section our
underlying graph into different sets of sub-graphs (slices), and the purpose
for why we partition the graph in the ways we do. Lastly, we provide an
overview of the concept of vertex activity. Our goal with everything we
introduce in approach is to extract as much information from the dataset we
have containing the DW as possible, and the natural starting point of this
process is to build the underlying network based on the interaction of Twitter
users (see Section 2.4). From there we define the types of slices we will be
producing as sets, while emphasising on the reasons behind us looking into
them and the differences between them. Finally, we define vertex activity
as the degree centrality, counting both in-bound and out-bound edges, of
a vertex and explain why we believe this measure can provide insight into
the dynamics of the DW through central or in other ways important Twitter
users.
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Table 3.1: Timeline of the data collection.

earlier · · · · · ·• All tweets ever tweeted.

2000 · · · · · ·•
Our data starts. Thread
completion leaded to
finding very old users.

Dec 2019 · · · · · ·•
Corona virus identified.
Started collecting data/
looking for historic data..

Dec 2019 · · · · · ·•
Started collecting data
containing Covid related
key.

21.01.20 · · · · · ·•

First tweet linking 5G to
Covid (mentioning of both
in the same tweet, not
necessarily the first).

Feb 2020 · · · · · ·• We find out about the
conspiracy.

03.04.20 · · · · · ·• First towers burn.

15.05.20 · · · · · ·•
Collection ended,
investigation of data
stopped.

later · · · · · ·• Collection of more data.

3.1 The Data Base & Extracting Temporal Data

Data Acquisition

Since Twitter’s Terms of Service prohibit storing large datasets, we choose
a streaming-based approach, first introduced in [62], storing metadata
only. We keep only in-stream-anonymized user Ids, and the corresponding
timestamps to create the tweet-retweet-user mapping. Moreover, we do
neither store or process any other information. The data collection took
place using a custom build framework for Twitter graph analysis [43], and a
custom scraping strategy.

Between December 2019 and May 2020, about 1 billion Twitter statuses
related to the COVID-19 pandemic were collected by querying statuses
containing the keywords presented in table 3.2. The data collection timeline
is visualized in Table 3.1.
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Filtered
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Dataset

Figure 3.1: Building the dataset: The first steps of our pipeline. Further
description can be found in the text.

Loading and Filtering

For loading a sufficient amount of Twitter data related to the COVID-19
pandemic, a framework for handling the massive amounts of data, the “Fact-
Framework” [43], was created by Daniel T. Schroeder. The entire COVID-19
related dataset, produced by querying the API for the keywords presented
in Table 3.2, was loaded into the framework that was later finished through
collaborative efforts. The data was then filtered once more, searching for
keywords related to the 5G-network, e.g., “5G, 5g, 60Hz, #5G, . . .” to obtain
a set of tweets likely to be part of the 5G-Corona conspiracy. This step
reduced the number of statuses of interest to 364, 325.

Enrichment

As described in Section 2.4, a status can be replied to or retweeted, which
leads to threads starting from one status and propagating down a “sharing-
ladder”. As mentioned earlier, searching for tweets containing keywords
is limited by a 2 week window, but if one possesses the id-attribute of a
status, it is possible to find it no matter how old it is. This allows restoring
“parent”-statuses that did not contain the keywords we previously searched
for on Twitter. This enrichment process restored more of the conversations
connected to the DW. Since the Twitter API does not enable finding “child”-
statuses, the thread completion process is limited to searching for child-
tweets only in the data we already possess. As a result, we deal with a
multitude of incomplete threads.

The restoring of statuses connected to the ones from the filter resulted in
the base dataset containing all the potentially interesting tweets found during
the entirety of the collection process. We will not be using the entirety of
the base dataset in our experiments. We consider anything outside of the
period 01.02.2020 − 11.05.2020 as negligible for a quantitative analysis due
to the small number of relevant tweets posted before and after this window.

Contact Extraction

Given the now filtered and enriched dataset, we start extracting information
about interactions between users. Therefore, we go through all the statuses
in our dataset and count the contacts between two users. We define

Zu = set of all users

and
Zs = T ∪R ∪B ∪Q
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Table 3.2: This table shows an overview of the key words we looked for in the
tweets we acquired using the Twitter API. DR stands for Directly Related,
G stands for General.

Neutral DR German Neutral G Negative
coronavirus10 coronar_allesoeffnen vaccination coronapanik
corinavirus6 allesoeffnen vaccine covidiot

corona allesöffnen epidemic
coronaoutbreak coronadeutchland pandemic
coronavirus xj621 quarantine
coronavirusde machtbueroszu quarantined

coronavirusoutbreak machtdiebueroszu mutation
covid bueroszu wuhan
covid19 büroszu

covid2019 diebüroszu
covid_19
covid-19

wuhancoronavirus
wuhancoronovirus

wuhanvirus9
coronavírus
coronavirus7
coronavirus8
coronavirus9
zerocovid
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with Zs being the entire set of statuses, T being the set of tweets, R being the
set of retweets, B being the set of replies and Q being the set of quotes (see
Section 2.4). A contact between two users is defined as any user j interacting
with any user i through either

1. User j retweeting a status by user i,

2. User j replying to a status by user i,

3. User j quoting a status by user i.

We can represent the set of contacts as a symmetric adjacency matrix
A where Aij = 1 represents a contact while Aij = 0 represents no contact.
Contacts are directed and weighted after the type of interaction. However,
throughout this thesis, we treat contacts as unweighted and undirected edges.
In other words, these contacts are the edges of our networks, which represent
the connection between users. Each of these contacts is accompanied by
a time-stamp telling us when the contact was made, which alongside the
adjacency matrix, is the basis of the graphs we build.

3.2 Graph Building

Filtered
5G-Covid 
Dataset

Enrichment Complete 
Dataset

Contact 
Extraction Adjacency

Matrix
Graph Building

Figure 3.2: Building the dataset: The second step from our pipeline which
can be subdivided into three/four smaller steps.

We build interaction networks (see definition in Section 2.4) based on the
adjacency matrix induced by the contacts. Thus, the vertices represent
statuses, and the edges represent a contact between them. Note that all
statuses produced by an individual user have the same ID in our dataset.
Thus, they are collapsed into one vertex, i.e., all the contacts associated
with the statuses of one user become edges connected at one end to only
one vertex or, in other words, one user. As previously stated, we define a
contact as any two users interacting through the act of retweeting, quoting
or replying (see Section 2.4). At the same time, we store attributes to the
statuses to use them as vertex attributes.

We define the underlying graph G↓ as the temporal graph containing the
entirety of vertices (Twitter statuses) and edges (contacts) in our dataset

G↓ = (V↓, E↓), (3.1)

where V↓ = {vi}Ni=0 and E↓ = {(u, v, t), u, v ∈ V↓, t ≤ T}. Here T is the
time window of data collection, so that T = tf − t0. We want to emphasise
that each edge has a unique timestamp t which is the exact datetime of the
contact taking place.
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3.3 Extracting Slices

A collection of interactions over a large window of time cannot by itself
provide us with much information about the dynamics of said interactions
over time. However, partitioning the information into slices enables us to
study how the network changes across them. To examine the evolution of
the network, either temporal or as a result of contacts, we divide G↓ into
sets of “static” slices.

3.3.1 Defining a Slice

We define a slice as a sub-graph of G↓ so the set of these slices is S =
{G(V↓, Ei), i ∈ L,Ei ∈ E↓} where L is the number of slices. We wish to
produce multiple versions of sets of such slices. Some sets are purely
temporal, and others use a “sliding window” approach where we determine
slices after the evolution of the neighborhoods of vertices. The sets of slices
may be temporal, but each slice in a temporal set is a static “snap-shot”
of some time period in the interaction network. The following subsections
introduce three different types of slices; temporal slices, accumulative slices,
and contact slices. Our motivation for producing multiple types of slices is
the possibility of extracting different types of information from them.

Pure time-slices provide information about the temporal evolution of the
network as a whole. However, they make it hard to track the intersect of
clusters across time as vertices that are not active in a time period will be
removed. Accumulative slices make it possible to track clusters but become
large quickly, making them difficult to work with, especially when looking
into the temporal changes. By saying temporal changes, we refer to how
the conversation’s discourse changes over time, the addition of or loss of
users active in the conversation, and how the dynamics of user interactions
evolve. Contact-based slices are a new way of producing sub-graphs. Their
purpose is to provide a better picture of how conversations or communities
within the graph evolve and how that affects the dynamics of the network
as a whole. In a Twitter interaction network, edges represent contacts
between statuses. Connected statuses are, in reality, conversations that are
observed as communities in the network. Statuses with outbound contacts
to other statuses are responses, so a vertex’s neighborhood is by definition a
conversation.

3.3.2 Accumulative Slices

The accumulative slices are defined as the set of all contacts made in the
time interval [0, ti], 0 < ti < ti+1 ≤ T , where T is the time window of data
acquisition. This means that slice si+1 contains all contacts in si plus all
other contacts made on the time interval [ti, ti+1]

si+1 = {u, v ⊂ V↓ : ∃(u, v, t) ∈ E↓ ∧ t ∈ [0, ti+1]}
= si ∪ {u, v ⊂ V↓ : ∃(u, v, t) ∈ E↓ ∧ t ∈ [ti, ti+1]}. (3.2)
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s1
s2

s3

Figure 3.3: Illustration of accumulative slices. Slices contain all vertices and
edges from the previous slices.

We define the distance between two subsequent times, ti+1 − ti, as ∆t
which is equal for all i. The last slice of the experiment is, by definition, the
entire underlying graph, G↓.

3.3.3 Temporal Slices

t

s1 s2 s3

Figure 3.4: Illustration of temporal slices. Slices do not contain the vertices
and edges of previous slices.

We divide our graph into slices of sub-graphs defined by the timestamp
of each edge. We remind the reader that edges are contacts between users
(retweets, comments etc., see Sections 2.4 and 3.1) and thus associated with
a timestamp. We divide our set of edges into intervals of time, e.g., one day,
a week, which we call ∆t = (ts, te) so that we get L slices in total and the
entire time interval where we collected our dataset T = teL− ts1. This results
in a temporal graph G = (V↓, E1, ..., EL). Now each slice si ∈ S contains all
edges added to the network in the time period ∆ti with

S = {G(V↓, Ei), i ∈ L}, (3.3)

and
⋃L
i=1 si = G↓.
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3.3.4 Contact Slices

Another way of defining a slice is to look at the number of new contacts a
vertex makes. We define k as the maximum number of neighbours a vertex is
allowed to have at any given time. This scalar parameter can be a constant
value for all vertices in G or a vertex-varying value defined by the level of
“activity” displayed by each vertex individually. A general definition of the
neighbourhood of a vertex is

N(v) = {u ⊂ V↓, u 6= v : ∃(u, v, t) ∈ E↓}, (3.4)

which is all vertices directly connected to vertex v through an edge.
It becomes evident that the formalization of these slices must be done

inductively as there is no way of knowing beforehand when a neighbourhood
grows larger than k, i.e., it is not possible to start at the end and slice as we
move backward.

For all slices we start by transforming our underlying network G↓(V↓, E↓)
into a temporal graph G = (V↓, E1, ..., EM ) where M is the total number
of edges in E↓ and Ei = (ui, vi, ti) ∈ E↓ contains exactly one edge with
ti−1 < ti < ti+1. Furthermore,

⋃M
i=1Ei = E↓ applies. This means that we

have ordered the edges linearly by time. Subsequently, we start to merge
the edges into a unified graph, one by one, until some criteria function, for
which we will present examples of in the following, of the neighbourhoods
at time ti, Nτ (v), and k is is activated. We introduce a new time dependent
definition of the neighbourhoods as

Nτ (v) = {u ⊂ V↓, u 6= v : ∃(u, v, t) ∈ E↓ ∧ t ≤ τ}, (3.5)

so that after merging edges with timestamps up to t, Nτ (v) describes the
neighbourhoods in the graph G = (V↓, E1, ..., Eτ ) where Eτ = (u, v, τ).

The criteria function, C(Nτ (v), Nτ (u), k), determines when a new slice
should begin. How the new slice is initialized and what the criteria function
is can be varied, so let us begin by looking at the case of a constant k.

Criteria Function: Constant k

A new slice is initialized as the old slice minus the oldest edge in the
neighbourhood, which has grown larger than k. We denote the removed
edges as forgotten edges, eo. We also require agreement between the vertices
connected to an edge proposed to be forgotten, that is to say, that the
neighbourhoods of both vertices have to be larger than k. We define the
criteria function in the case of a constant k as

C(Nτ (v), Nτ (u), k) = (|Nτ (v)| > k) ∧ (|Nτ (u)| > k), (3.6)

a function that returns true if both neighbourhoods connected through
an edge are larger than k and false if not. In short, edges are merged until
the criteria function returns true, and a new slice is initialized. After running
through this process we end up with a set of slices S = {sj}Lj=1 where each
slice sj , for j = 2, is a subgraph of G↓ containing the entirety of slice sj−1
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except from the forgotten edge, eoj−1. This means that at the end of the
process remains a set of forgotten edges

F = {eo1, ..., eoL} (3.7)

The reason for slicing the network in the proposed manner is to analyze
the evolution of the network by keeping track of the movement of vertexes
into new clusters. We want to see if removing the oldest contact after a user
has made k new contacts is a possible way of doing this. More explicitly, we
assume that by slicing according to contacts, we can gain information
about the users joining and leaving sub-conversations in the DW.

Criteria Function: Vertex-Varying k

Moving on to the vertex-varying k, we imagine defining a non-constant k
uniquely associated with each vertex. We wish to determine a set of scalars
K = {k1, ..., kN} using various methods, the first of which is the mean
sizes of the communities of the vertices in the previous slices. We begin by
initializing all k’s as the same value, so kv = k for v = 1, ..., N . As with the
constant k we start merging edges into one graph until C(Nτ (v), Nτ (u), kv)
returns true. Before initializing the next slice, we calculate the size of all
neighbourhoods Nτ (v) and find the mean of the initial k-values and the new
neighbourhood sizes, so

K =

{
kt=0
v + kt=τv

2

}N
v=1

= {kτ1 , ..., kτN}. (3.8)

Now we initialize the next slice in nearly the same way as we did when
using the constant k. The only difference is that the criteria function is
now vertex dependent as the value of k uniquely depends on the individual
neighbourhoods. We repeat this process, calculating the new mean each time
the criteria function returns true, initializing a new slice. At the end of the
process, the set of k values will be

K =

{
kt=0
v + kt=τv + ...+ kt=Tv

L

}N
v=1

=
{
kT1 , ..., k

T
N

}
. (3.9)

The reason for looking at another approach than the constant k is that
some users communicate a lot while others communicate very little. Thus,
imposing the same size condition on all the neighbourhoods would be naive,
especially concerning the agreement requirement. If the neighbourhood
of v, a very active user, grows larger than k, but the oldest edge in the
neighbourhood is connected on the other end to a user who has only once
been a part of the conversation, the criteria function would return false as
that neighbourhood would be smaller than k. In reality, we would want to
remove that edge as it is very plausible that that single contact is no longer
a critical part of the conversation within the neighbourhood of the active
user v. The goal is that a vertex varying k will pick up on this and lead to
us forgetting these non-essential edges.
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3.4 On Vertex Activity

As described in Section 2.5, centrality measures give us insight into which
users or vertices contribute most to the flow of information in a network. As
we are dealing with an undirected network, we can not distinguish between
if a vertex is highly active (e.g., comments on other statuses with a high
frequency) or is made highly active by others (many other statuses are
responses to this status). We therefore define vertex activity as

Definition 3.4.1 (Vertex Activity). The number of occurrences where a
vertex is a part of a contact.

In other words this is the number of edges connected to a given vertex
and so equal to the degree centrality (see Section 2.5) of the vertex. This can
be calculated for each slice si or for the entire underlying network G↓. This
measure is of interest as we wish to explore the correlation between vertex
activity of a group of vertices and other properties of the system such as the
size of the largest clusters and number of overall contacts. The goal of which
is to gain insight into how the vertices affect the evolution of the network,
are all vertices important or will we see that a smaller group of vertices are
driving the conversation surrounding the 5G-corona misinformation event
(see Section 2.2).

Before looking into the vertex activity we formed some hypotheses going
off previous experience about how Twitter works and how people use it to
communicate. We know that twitter allows for conversations between users
though the comment section attached to each status, so it is fully possible
to have conversation back and fourth between two or more users. There is
also a possibility, especially regarding influential people with large followings,
that a user will post a status that gain a lot of traction through other users
retweeting/commenting on it where the user who originally created the status
does not respond further to those interacting with it. At least there is a
large probability that the amount of others interacting with the status far
outnumbers the number of responses back from the user who created it.
Take the twitter account @BarackObama (former President of the United
States) as an example. As of 21.03.22 the account has a following of 131.3
million users and looking at a tweet posted by the account on 13.03.22 we
count 29, 8k retweets, 6, 672 quotes, 31k comments and 354, 7k likes. It is safe
to assume that with an amount of responses of this size, Barack Obama does
not have time to respond to every single one each time he tweets something,
and so in a network context the amount of inbound edges far outnumber the
outbound.
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Chapter 4

Experimentation, Results &
Analysis

The following chapter presents the results of the experiments. We begin by
recapitulating the different types of sets of slices we defined in Chapter 3
before we move on to parameter configuration for the sets we produce. At
this point, everything we need to set up our experiments is given. We start
our experiments with a preliminary analysis of the data, in particular, a
look at the vertex distribution across the sets of slices. This seems to be a
natural starting point as the evolution of the density of vertices and edges
in the network can indicate where the activity in the DW is significant.

The next step in the process is to look into the communities within the
DW through cluster detection. We investigate the distribution of cluster
sizes and turn our focus to the magnitude of the largest cluster across slices.
The reason for this approach is that we assume that large clusters are more
significant to the overall discourse of the conversations contained in the DW
and thus more important than the smaller ones. Furthermore, we track the
largest cluster through re-identification of vertex members to explore the
origins of the DW. If the largest cluster stays the largest from beginning to
the end, it could indicate a single “important” origin of the DW.

Finally, we take a closer look at the temporal slices, producing more sets
with finer and courser time-grids. The former is in an attempt to identify
more local behaviours of the DW and the latter to see if we can observe more
general patterns in the DW. We compare the activity of the vertices with
the highest degree centrality to the total number of contacts in the graphs.
This approach allows us to determine the significance of these vertices in
terms of the overall discourse. Our very last experiment is extracting the
average nearest neighbour degree (ANND) function of slices to investigate
its assortativity.

In the following, we propose four main hypotheses regarding what we
expect to find from our network in particular

Hypothesis 1: Centralized Core
A minor fraction of users drive the DW. (H1)
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The reasoning for proposing hypothesis H1 is driven by our intuition
about and experience with how Twitter works, as elaborated on in
Section 3.4. In short, the conversation threads of Twitter are not always
conversations back and forth but rather a set of responses to one engaging
status. Hypothesis H1 can be reformulated as a proposal for a driver of the
DW, drawing parallels between the dynamics of the spread of the DW during
its peak on Twitter and a phase transition (see Section 2.8).

Hypothesis 1a : The Influencer Transition
When an influential user tweets, the number of users active in the
digital wildfire increases largely. (H1a)

We cannot with a 100% certainty differentiate between the importance
of the act of tweeting, when the tweet is posted or what is the content of the
post. However, the effect is that many new people participate in the DW by
responding to the influencer.

Hypothesis 2: Dispersed Core
A large fraction of the users contribute to driving the DW. (H2)

Hypothesis H2 was developed from the idea that the DW possibly has
multiple origins, e.g., that more than one initial conversation about the
connection between 5G and COVID-19 could be significant to the evolution
of the DW.

Taking more inspiration from phase transitions, more specifically
percolation transitions (see Section 2.8), we propose another hypothesis for
a driver of a transition in the network.

Hypothesis 3 : The "Black Hole" Transition
When the size of the largest cluster S reaches a critical size Sc, the
cluster begins acting as a "black hole". (H3)

By black hole behaviour, we refer to the parallel of an immense
gravitational pull. For an interaction network, this essentially means that
a cluster is gaining new vertices at a substantially higher rate than when
S < Sc. This hypothesis connects size to change in size, i.e., comparing a
function to its first derivative.

Hypothesis H3 differs from the gigantic cluster parallel we drew under
percolation transition (see Section 2.8). Here, we are not assuming that
the entire network becomes fully connected when reaching the percolation
threshold but rather that a large part of the network at some critical largest
cluster size, Sc, becomes more connected at a substantially higher rate than
for S < Sc. This idea of a transition is more similar to a percolating cluster
in a lattice, without imposing a definite border or similar criteria at which
the transition occurs. To be clear, this is not an actual phase transition but
comparable to the concept.
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Before presenting the results, to help the reader remember the
terminology, we recapitulate the different types of slices produced in the
thesis. We produced multiple sets of slices based on the different methods of
slicing our underlying graph G↓. The following are definitions of these slices

• Accumulative Slices
A slice i contains contacts that occurred in the time interval [0, ti], ti <
ti+1 <= T , where T is the entire time frame in which the DW occurred.
All slices i + 1 contains all the contacts from slice i plus contacts
made in the time interval [ti, ti+1]. Furthermore, we define the distance
between two subsequent times, ti+1 − ti, as ∆t which is equal for all
time intervals in a set. The last slice in the slice-set will by definition
be the entire underlying graph.

• Temporal Slices
A slice i contains contacts that occurred in the time interval
[ti−1, ti], ti−1 < ti <= T . Subtracting the accumulative slice i from
the accumulative slice i + 1, results in the temporal slice i + 1. The
first slice in the temporal slice-set is equal to the first slice in the
accumulative slice-set as long as ∆t is the same in both experiments.

• Contact-Slices
Here, slices are determined by a criteria function considering the
number of allowed neighbours for each vertex so that C = f(k).
Starting with an empty network, we add contacts after their time-
stamp until the criteria function determines a neighbourhood is too
large. At this point, the oldest edge in the neighbourhood is removed,
and a new slice is initiated. We continue this process until all the edges
of the underlying graph are added, resulting in a set of slices. This is
an inductive process, which means that we do not know the cardinality
of the set beforehand.
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4.1 Parameter Configuration for Slices

The very first step in our experiments is to produce the sets of slices. To
accomplish this, we must decide on the parameters governing the slicing
processes.

Temporal- & Accumulative-Slices: Time-Intervals

We decide a reasonable time-interval to be ∆t = 1 day because we assume
that conversations stay more or less stable within a day with few significant
changes to the central message. Moreover, we believe a conversation
continues across days, but pauses during the night when Twitter users are
sleeping. Thus, we use this ∆t for both the temporal and the accumulative
slices. For the temporal set of slices, this ensures that each slice represents a
“snapshot” of all contacts that occurred during one day. For the accumulative
set, every slice will contain all contacts made up until one day in the Twitter
interaction network related to the DW.

Contact Slices: k-values

To identify candidates for the maximum neighbourhood size in our criteria
function, Equation 3.6, we looked into the distribution of neighbourhood
sizes in the entire network. We present the distribution of degree centrality
in the underlying graph G↓ in Figure 4.1. Here, we see that most of the
vertices have neighbourhoods of size k / 1000. These results motivate us to
create contact-based slice-sets using criteria functions with discreet values of
k ∈ [10, 800]. We initialize the first set using k = 200 and quickly observe
signs of problems like a very large amount of slices and the production
being very time-consuming. A great number of slices leads to a much larger
set of data, and so they would require substantially more time spent on
calculations. Considering the scope of this thesis we decided for using larger
values of k. After testing values 200 < k ≤ 800 we observe that sets produced
using k = 600 and k = 800 give us a reasonable amount of slices within a
sensible amount of time. For contact-based slicing, we found that the major
issue of using a constant k-size for all vertices, while not imposing other
criteria, is that small values of k produce a massive amount of slices, while
the higher values converge towards the accumulative slices.
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Figure 4.1: The distribution of node activity in the complete underlying
network, G↓. We observe the distribution to be much denser around small
neighbourhood sizes and quickly grows sparser towards higher ones.
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Figure 4.2: The distribution of node activity in the complete underlying
network, G↓. This is another way of visualizing the distribution from Figure
4.1, here with both axes logarithmically scaled to reveal a weak scale-free
nature of G↓.
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4.2 Preliminary Analysis

To familiarize ourselves with the dataset and slice-sets, we begin by looking
into the more general attributes of the network. It is important to note
that statuses produced by one Twitter user are collapsed into one vertex,
while edges belonging to those statuses are kept. We wish to utilize the
information obtainable from this as a guide for later experimentation, to
identify possible phases of the evolution of the DW and to formulate some
initial expectations.

4.2.1 Data Exploration

A natural starting point is to examine how the network’s number of vertices
and edges, respectively representing Twitter users related to the COVID-5G
misinformation event and the contacts between them, vary throughout the
sets of slices. Figures 4.1 and 4.2 both show the degree distribution in the
underlying graph G↓. Figure 4.1 clearly shows the general qualities of the
distribution without requiring much interpretation. The majority of degrees
are of degrees < 102 an the distribution seemingly decreases exponentially
except for some outliers between degrees of 200 − 400. This exponential
decline is clearly shown through the linear pattern seen in the log-log plot
in Figure 4.2, which apart from the outliers between 200− 400 very closely
mimics a power law of the degree with negative exponent. This indicates
that our network is at worst semi-scale-free.

The Vertex and Edge Distribution Across Slices

We looked into how each slice’s number of vertices and edges varied across the
experiments through visualization of the distribution of users and contacts
in Figures 4.3 and 4.4. By looking at the temporal slices in Figure 4.3
we identify the peak of the DW as April 2020, which correlates with the
expected timeline (see Section 2.2). Since each slice represents one day
in the period [01.02.2020 − 11.05.2020), we exchange the labels on the x-
axis to represent a timeline, which we show in Figure 4.5. Furthermore,
we deduce that slices [60, 80] in the bottom of Figure 4.3 translates to the
period 01.04.2020 − 21.04.202 shown in Figure 4.5, which is right around
the peak of the DW. The accumulative slices indicate the same peak by the
slope being steepest around the same indices as the peak in the temporal
slices, which is expected from us using the same ∆t we produced the sets.
Comparing Figure 4.4 to the accumulative slices in Figure 4.3, we find that
the distributions are very similar, and any discrepancies are likely to come
from the varying number of slices. Taking a closer look at the temporal slices
in Figure 4.5, we can identify three distinct areas by analyzing the vertex
distribution over time, which we categorize as follows

• Phase 1: Before the peak of the DW on Twitter,

• Phase 2: During the peak of the DW on Twitter,

• Phase 3: After the peak of the DW on Twitter.
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Figure 4.3: Accumulative (top) & Temporal (bottom) Slices:
Distribution of users and contacts related to the DW across slices. We
identify the peak of the DW on Twitter between approximately slices [60, 80],
in the accumulative as a steep slope and in the temporal as clear peak in the
area in question.
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Figure 4.4: Contact slices k = 600 (top) & k = 800 (bottom):
Distribution of users related to the DW and contacts across slices. As
with the accumulative slices in fig. 4.3 we observe a strictly increasing
distribution, only here less smooth. This comes from the way the criteria
function slices the underlying graph, which differentiates the contact slices
from the accumulative ones.
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Figure 4.5: Distribution of users related to the DW and contacts over time
in temporal slices of ∆t = 1 day. This figure shows the same result as the
bottom plots in fig. 4.3, only now plotted against the corresponding timeline
the slices represent.

For the reader familiar with some statistical mechanics, the distributions
of vertices vs. time for the temporal slices shown in Figure 4.5 closely
resembles what we expect from phase transitions in critical phenomena
physics, with an example being the specific heat per spin vs. temperature for
the 2-dimensional Ising-model. More generally, the system is undergoing a
transition. To observe a behaviour of this nature provides us with confidence
in moving forward with our quest of trying to define and quantize this
behavior. One way of doing so is to look at how groups within the network
behave and evolve. In the following, we look at cluster detection and tracking
expecting that the clustering of the network can help us understand the
underlying reasons for this transition and provide suitable suggestions for
drivers.
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4.3 Cluster Detection

We explored the extraction of communities in our experiments through three
algorithms; Leiden [1] and Louvain [2], whom are modularity based, and
Label Propagation [3]. The resulting distribution of cluster sizes from each
method is presented in Figures 4.6 to 4.8. Right away we see that the
distributions for accumulative and contact slices are very similar, which could
be expected from the similarities in the distribution of nodes and contacts
shown in Figures 4.3 and 4.4. The same similarity can be seen from the
fraction of clusters belonging to a certain size-group, shown in Figures 4.9
and 4.11.
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Figure 4.6: Accumulative Slices: Distribution of cluster sizes over all
slices. For sizes < 102, the distribution is densest and seemingly follows a
power law. As there are very few clusters of size > 102, the distribution grows
more erratic, and there are no longer any apparent fitting approximations.
This behaviour applies to all three algorithms.

The distribution for the temporal slices, shown in Figures 4.7 and 4.10,
show, in general, the same trend, but with less difference between the
clustering methods as well as having a smaller maximum size of the clusters.
This reduction in maximum size can be explained by the temporal slices not
being accumulative, and therefore contain fewer vertices per slice. However,
slice 1 is an exception, as it is equal to the accumulative slice 1 (see
Section 3.3). For all sets of slices, we observe a distribution that favors
smaller cluster sizes, < 102, which is in line with what we expect from the
degree distribution of the underlying graph, shown in Figure 4.2, being close
to scale-free.

We observe that all three methods produce distributions that, for the
most part, follow a power law with a negative exponent. Both Leiden and
Louvain produce many clusters of size 1, which is not a good representation
of a network with no vertices of degree 0 such as ours. This multitude of
clusters of size 1 is part of why the distributions from Leiden and Louvain do
not follow a true power law. On the other hand, Label Propagation produces

52



100 101 102 103 104

Cluster size

10 2

10 1

100

101

102
M

ea
n 

nu
m

be
r o

f c
lu

st
er

s
Leiden
Louvain
Lprop

Figure 4.7: Temporal Slices: Distribution of cluster sizes over all slices.
For sizes < 102, the distribution is densest and seemingly follows a power
law. As there are very few clusters of size > 102, the distribution grows more
erratic, and there are no longer any apparent fitting approximations. This
behaviour applies to all three algorithms.

no clusters of size 1, which better represents our network and makes for a
distribution that nearly perfectly resembles a power law with a negative
exponent.

4.3.1 Vertices in the Largest Clusters

To study the temporal evolution of the overall discourse, we seek to gain
more insight into the largest cluster. In a Twitter interaction network, the
largest clusters represent the conversations or narratives that have the largest
number of contributing users. We do this as we assume that the larger
clusters are more dominant than smaller clusters in affecting the overall
dynamics of the system. We presume, as presented in hypothesis H2, that
a driver of DWs is that a significant fraction of the users converse back
and forth, over time compelling more people to join the conversation, thus
resulting in growing clusters. As stated in H3, we suppose that there could
exist a critical size at which a cluster would start to gain new vertices at
a substantially higher rate, i.e., displaying a nature similar to a black hole.
Thus, to test these hypotheses, we need to examine the behaviour of the
largest clusters in our network.

The fraction of vertices in the largest cluster in each slice, relative to
the total number of vertices, is visualised in the left parts of Figures 4.12 to
4.15, while the right side displays the fraction of vertices belonging to the top
10% of the largest cluster of each slice. The figures show that Louvain and
Leiden assign more vertices to the largest clusters than Label Propagation.
The difference between the algorithms appears much more significant for the
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Figure 4.8: Contact slices k = 600 (left) & k = 800 (right): Distribution
of cluster sizes over all slices. For sizes < 102, the distribution is densest and
seemingly follows a power law. As there are very few clusters of size > 102,
the distribution grows more erratic, and there are no longer any apparent
fitting approximations. This behaviour applies to all three algorithms.

accumulative and contact-based slices than for the temporal slices. However,
if we pay attention to the difference in the scaling of the y-axes, we see that
this only really applies to the right-handed plots.

The difference only appears great for the left-handed plots because of
the difference in magnitude on the y-axis, but there is a large difference
for the right-handed plots. We presume this is due to the fact that the
Label Propagation algorithm favours smaller clusters and produces less large
clusters (clusters of size > 1000 vertices) than Leiden and Louvain (see
Figures 4.9 to 4.11).

When using the Leiden and Louvain algorithms, the number of vertices
in the largest cluster stays below 15% of the total for the accumulative
and contact-based slices. In contrast, the number of vertices in the top
10% largest clusters increases to around 50% towards the final clusters.
These results indicate that during the period close to and during the peak,
there existed more than one significant conversation dominating the DW.
Moreover, the results indicate that the top 10% largest clusters represent
what the algorithms believe to be all statuses belonging to multiple densely
connected conversations. Provided this, there is reason to look into more
than the single largest cluster in future work on the subject.

For the time-based slices, shown in Figure 4.13, both the number of
vertices in the single largest cluster and the number of vertices in the top
10% of largest clusters lie between 0 − 70%. Especially in the left figure,
displaying the fraction of vertices belonging to the single largest cluster,
when comparing the scale of the y-axis, we see that the increase in the
relative number of vertices across slices is much more significant than in
the accumulative and contact-based slices. As expected, the results for the
temporal slices are different from the accumulative and contact-based ones,

54



1-9 10-99 100-999 1000-
Size bins

10 3

10 2

10 1

100

Fr
ac

tio
n 

of
 to

ta
l n

um
be

r o
f c

lu
st

er
s Leiden

Louvain
Label Propagation

Figure 4.9: Accumulative Slices: Fraction of clusters whom belong to a
size group. An alternative visualization to Figure 4.6 which more clearly
shows the over-all distribution of the size-magnitudes of clusters produced
by the three clustering algorithms. It is clear from the figure that the great
majority clusters produced by all algorithms have sizes between 1−9 vertices.

as they include statuses from earlier days of the DW. Most often, the number
of vertices in the largest cluster is relatively small < 20%, but in a seemingly
non-ordered fashion, when comparing it to the distribution of vertices over
slices, Figure 4.3, it fluctuates towards higher values in specific slices. To
support our results we extend to not only the largest cluster, but the 10%
largest clusters. From the right-handed figure, displaying the number of
vertices in the top 10% largest cluster, we observe that it acts much more in
aligning with what we expect. There we observe a tendency of a peak that
more or less aligns with the position of the peak of the DW on Twitter. This
result shows a centralization of the conversations revolving around
the DW. This phenomenon has to the best of our knowledge never been
observed before and seems to be an ideal candidate for the prediction of
DWs.

We observe a very high increase in the relative number of vertices in the
largest cluster for the last slice in the temporal slice set, Figure 4.13. If we
compare this result to Figure 4.5, we see that the last slice contains very
few vertices in total. Moreover, we know that Twitter banned statuses and
users promoting attacks on 5G infrastructure after the peak of the DW in
April 2020 (see Section 2.2), which, amongst other efforts, led to the decline
in statuses relating to the DW after April 2020. In light of this, we argue
that the most likely cause for the spike in the last slice in Figure 4.13 is that
there were not many other active conversations relating to the DW at this
point.
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Figure 4.10: Temporal Slices: Fraction of clusters whom belong to a size
group. An alternative visualization to Figure 4.7 which more clearly shows
the over-all distribution of the size-magnitudes of clusters produced by the
three clustering algorithms. It is clear from the figure that the great majority
clusters produced by all algorithms have sizes between 1− 9 vertices.
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Figure 4.11: Contact slices k = 600 (left) & k = 800 (right): Fraction
of clusters whom belong to a size group. An alternative visualization to
Figure 4.8 which more clearly shows the over-all distribution of the size-
magnitudes of clusters produced by the three clustering algorithms. It is clear
from the figure that the great majority clusters produced by all algorithms
have sizes between 1− 9 vertices.
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Figure 4.12: Accumulative Slices: Number of vertices relative to the total
number of vertices in slice. Left: Fraction of vertices in the largest cluster
of each slice. Right: Fraction of vertices in the top 10% largest clusters of
each slice.
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Figure 4.13: Temporal Slices: Number of vertices relative to the total
number of vertices in slice. Left: Fraction of vertices in the largest cluster
of each slice. Right: Fraction of vertices in the top 10% largest clusters of
each slice.
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Figure 4.14: Contact Slices k = 600: Number of vertices relative to the
total number of vertices in slice. Left: Fraction of vertices in the largest
cluster of each slice. Right: Fraction of vertices in the top 10% largest
clusters of each slice.
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Figure 4.15: Contact Slices k = 800: Number of vertices relative to the
total number of vertices in slice. Left: Fraction of vertices in the largest
cluster of each slice. Right: Fraction of vertices in the top 10% largest
clusters of each slice.
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4.4 Cluster Tracking

As emphasised in Section 4.3.1, we assume that the behaviour of the
largest clusters provides information describing the evolution of a DW.
This assumption prompts us to continue exploring by seeing if the largest
cluster from the beginning of the DW stays significant through time or
if other previously small or non-existing clusters, e.g., the emergence of
new narratives or growing popularity of previously non-engaging narratives,
start dominating the conversation. Suppose the largest cluster from the
very beginning of the DW stays the largest across all slices. In this case,
finding the largest cluster is a key quality for early identification of DWs as
it presents features unique to the spreading of a DW before it leads to harmful
consequences. Another fruitful outcome would be the results enabling us to
identify another point during the evolution of the DW from where the largest
cluster stays the largest. This result would indicate a critical point in the
DW and provides information about the structure of the DW.

We track the absolute largest cluster in each slice across slices through re-
identification. We re-identify clusters across slices by looking at the intersect
calculated by the fraction of vertices with the same user ID, where we deem
the cluster in slice i+ 1 which has most intersect with a cluster in i as well
as containing at least 50% of the vertices of in cluster i as the re-identified
cluster. As we base intersect on the ratio of similar vertices, this method only
works for the accumulative and contact-based slices. Moreover, the method
does not work for temporal slices, as they do not remember the vertices in
previous slices. Simplified, this means that for the temporal slices, there is
no way of knowing if a cluster in slice i+ 1 is the same cluster as any of the
clusters in slice i.

4.4.1 Tracking the Path of the Largest Cluster Across Slices

We begin by identifying the largest cluster in each slice and re-identifying
it through every following slice. This process creates a path through each
slice, except the last one. If the largest cluster in any slice i + 1 equals the
re-identified cluster from slice i, the paths from the two slices are the same,
and we only draw it once. We present these paths in Figures 4.16 and 4.17.
Here, we mark the start of new paths with (×), as well as the instances where
a cluster is no longer re-identified with (•) and when the largest cluster of
a slice is a part of a path other than the path of the largest cluster in the
previous slice with (H). To clarify, when the largest cluster in slice i + 1 is
re-identified as the largest cluster in slice i, this is not a new path, and we do
not mark it; we just continue on the path from the previous slice. Thus, H
does not represent a new path, it indicates that this largest cluster is not the
same as the largest cluster in the preceding slice, but it is the re-identified
cluster from some previous slice before that.

All the largest clusters are re-identified throughout the experiments,
except for the accumulative slices using the Leiden and Louvain algorithms,
where there are some instances where a cluster is not re-identified. In general,
the label propagation algorithm returns fewer paths. In other words, the
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largest cluster stays the largest through slices for a longer time and has
much fewer paths starting on older paths than the one from the closest slice
on average.

Except for the paths produced by the Leiden algorithm for contact slices
using k = 800 (top right in Figure 4.17), we observe gatherings of H in the
figures showing the results of the Leiden and Louvain algorithms. These
indicate an oscillation of the largest cluster, i.e., two clusters competing
for the title of largest. These oscillations represent two or more clusters
close in size that, how we interpret it, can represent two things. One
explanation is that the clusters alternate in gaining members over time.
The real-life interpretation of this is that there are two popular narratives
at the same time, both drawing new users to the DW. The other is that
new vertices have entered between slices that disrupt or merge clusters per
how the modularity-based algorithms produce clusters. These vertices can
be users who participate in the conversations around multiple narratives,
creating a link between the narratives. This corresponds with the behaviour
we observed in Figures 4.12, 4.14 and 4.15, that indicate that there is reason
to look into more of the large clusters than the very largest.

There is no evidence in the results that support the idea that the largest
cluster in the early stages of the DW stays the largest. Usually, for the
modularity-based algorithms, the first largest clusters stay large and grow
as the number of vertices in the network increases (see Figures 4.3 and
4.4). We interpret this as a thread or conversation with much traction at
the beginning, which either lost traction or that there were other threads
with more pull for a while. However, after a period, the thread gained the
attention of more people and became important for the DW once more. Only
for the results produced when using the Louvain algorithm on the contact-
based slices with k = 800 (middle plot to the left in Figure 4.17) does the
largest cluster from the first slice end up as the largest cluster in the last
slice. Thus, it is clear that this is not a constant attribute across slice-sets
and algorithms and, therefore, not an idea worth entertaining further.

In some instances, e.g., when using the Louvain method on the
accumulative slices depicted in Figure 4.16, as time traverses, the largest
cluster in a slice can no longer be recognized. This effect probably comes from
the fact that when adding vertices and edges to the network, the network’s
modularity, at some point, is maximized by dispersing the vertices to other
clusters, not by keeping the cluster in question. The real-world cause of this
is apparently that a conversation on Twitter over time can split into several
sub-conversations that are more densely connected than the conversation as
a whole.

The largest clusters resulting from the label propagation algorithm be-
have differently than those resulting from the modularity-based algorithms.
One possible explanation lies in the way the algorithm works. According to
the theory presented in Section 2.7.2, the label a vertex gets is determined
through agreement with its neighbours. One of our hypotheses, presented in
H1, is that a few influential people drive the DW. Combining this with the
distribution of vertex activity (see Figure 4.1) showing that many vertices
have a degree centrality of 1, i.e., many vertices only have one nearest-
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neighbour, and that we, based on experience with using Twitter, believe
that the majority of the contacts of influential people are inbound, we can
assume that a substantial amount of all new vertices added to the network
over time connects to only one other vertex. Adding 1-degree vertices does
not break up any clusters produced by the label propagation algorithm. The
new vertex would automatically agree with its nearest-neighbour about its
label. There are simply no other contending labels.

In some of the plots displayed in Figures 4.16 and 4.17, we observe abrupt
jumps in the size magnitude of the largest cluster between two consecutive
slices. This behaviour happens sporadically for all algorithms, both for the
accumulative and the contact-based slices. We hypothesize that, in rare
cases, one or more vertices that share strong bonds to more than one cluster
are added to the network. These can create “bridges” between previously
separate clusters and combine them into one cluster. For Leiden and Louvain,
this means that the modularity of the graph is no longer maximized by
keeping the clusters separate but rather by combining them, and for the
label propagation algorithm that the “bridge” is substantial enough for the
clusters on each side to agree on one shared label.
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Figure 4.16: Accumulative Slices: Path of largest cluster in each slice
through all slices. “×” marks the start of a new path, “H” marks where the
largest cluster of a slice lies on an already existing path (but not the same
path as the largest cluster from the preceding slice), and • marks where a
cluster was no longer re-identified in succeeding slices.
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Figure 4.17: Contact Slices k = 600 (left) and k = 800 (right): Path of
largest cluster in each slice through all slices. “×” marks the start of a new
path, “H” marks where the largest cluster of a slice lies on an already existing
path (but not the same path as the largest cluster from the preceding slice),
and • marks where a cluster was no longer re-identified in succeeding slices.
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4.5 A Closer Look at Temporal Slices

As seen from the results in displayed in Sections 4.2 to 4.4, the contact-
based slices made with a constant and high k-value gave results very close
to the accumulative slices, and did not provide us with sufficient amounts
of new information. For this reason, we will not pursue it further in this
thesis. We emphasise that we did not have the opportunity to implement
the contact-based concept entirely because of time limitations. However, we
firmly believe that this way of slicing an interaction network could provide
helpful insight into the interaction dynamics and the temporal evolution of
the network. Except for tracking clusters through re-identifying vertices,
we can extract the same information from the temporal slices as from the
accumulative ones. In this section, we will be focusing on vertex activity, a
feature of the network which, for our purposes, can be thoroughly examined
using the temporal slices. The reasons stated above prompt us to discard
the accumulative and contact-based sets moving forward, as there is no
more information to be gained from them. Most of the results in this
section depend only on the sub-graphs in the slices and not the clusters from
community detection. However, at one point, we will be comparing vertex
activity to the largest cluster produced by the Label Propagation algorithm.
When making the comparison for the largest cluster produced by Leiden and
Louvain, the results were very similar, so we will only be showing the results
from Label Propagation as an example. Moreover, our underlying graph
is constructed of pairs of vertices, i.e., there are no entirely disconnected
vertices in our network, so the minimum size of a partition produced by
a community detection algorithm should be 2. Leiden and Louvain tend
to produce single vertex partitions whenever the modularity score does not
sufficiently increase by moving the vertices into larger communities, resulting
in multiple single vertex “islands”. An artifact of the label propagation
algorithm is that all vertices connected to at least one other vertex will
agree on a shared label. Thus, the minimum size of a partition in our graph
is always 2. We now take a closer look at temporal slices. We produced two
new sets of slices; one using a finer time-step, ∆t = 4 hours, to see if we
could identify more local variations in the data, and one using a coarser one,
∆t = 3 days, to see if there is additional information to be found from a
potentially smoother distribution.

As re-identifying vertices across slices does not work for the temporal set,
we look into centrality measures to get an overview of vertex activity.

The Vertex and Edge Distribution Across Slices

As we move forward with only the time-based slices, in figures where we
have previously plotted the slice number, we now switch it out with the
corresponding timeline as previously displayed in Figure 4.5. As one slice
represents a given time period of activity concerning the DW on Twitter,
it directly translates to a date. We see that the distributions presented
in Figures 4.18 and 4.19 closely resemble the shape of the distribution
in Figure 4.5, which we expected as all are purely time-based slices with
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Figure 4.18: Distribution of users and contacts related to the DW over time
in temporal slices of ∆t = 4 hours.

different values for ∆t. The main difference is the resolution which increases
with a decreasing ∆t. The finer resolution in Figure 4.18 lets us identify
more local maxima in the number of users in the period leading up to the
peak of the DW on Twitter as well as some after the global peak. If this is
a general pattern for DWs spreading in OSNs or a behaviour unique to this
DW in particular can not be confirmed as we do not have other datasets
of DWs to compare our results to. If it is a general behaviour, such local
maxima can be a property to look for when trying to identify DWs before
they go viral in the future.

The general shape of the distributions of both the number of contacts
and users display a transition happening around the peak of the DW on
Twitter in early April 2020.

Vertex Activity

To investigate our hypotheses on whether it is the sum of many conversations
between a significant fraction of all users (H2) or only a few influential users
(H1) who contribute most to the evolution of the DW, we look into the degree
centrality of the vertices. One way to explore the relationship between active
users and the fraction of those who contribute the most is to compare the
total number of contacts to the fraction of contacts made by the most active
users. Therefore, we compared the sum of the contacts of vertices with a
higher degree centrality than 3-std over the mean degree of each slice to the
total number of contacts in our network. The cut-off for what we categorize
as “the most active users” (above 3-std from the mean) was chosen through
trial and error, where we tested multiple intervals to see which value would
produce a sufficiently small set of vertices relative to the total.

The results are presented in Figures 4.20 to 4.22. The figures show that,
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Figure 4.19: Distribution of users and contacts related to the DW over time
in temporal slices of ∆t = 3 days.

at times, less than 4% of the total users active in the conversation on Twitter
account for more than half of the contacts made. As our graph is undirected,
this measure must not be confused as 50% of the edges originating from
only 4% of the users; it simply means that over 50% of the edges are
either outbound from or inbound to 4% of the vertices. As pointed out
in section 3.4, even though the network is undirected, it is safe to assume
that the most active vertices have largely more inbound edges than outbound
from the nature of Twitter as an OSN. Thus, we assume that the majority
of this activity is users responding to the statuses of influential users.

These results incline us to further investigate the correlation between the
most active users and the evolution of the DW by comparing the degree
centrality of the single most active node in a slice and the size of the largest
cluster produced using the label propagation algorithm for every slice. The
figures displaying this comparison can be found in Figures 4.23 to 4.25.
Straight away, we see that the two measures nearly perfectly overlap for
all slices, indicating that one central user fully drives the largest cluster we
observe in a given slice. Within the limits of this thesis, this result gives
us strong support of hypothesis H1 as well as indicating that the driver
proposed in hypothesis H1a are worth investigating more in future work on
the subject of phase transitions in DW.
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Figure 4.20: Temporal Slices (∆t = 4h): Comparison between the total
number of contacts and the fraction of contacts attributed to the most active
users of the network. The left figure displays the percent of vertices relative
to the total number of vertices in a slice responsible for the contacts plotted
in the right-handed figure.
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Figure 4.23: Temporal Slices (∆t = 4h): Comparison between the
centrality degree of the single most active user in a slice and the size of
the largest cluster in a slice.
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Figure 4.21: Temporal Slices (∆t = 1d): Comparison between the total
number of contacts and the fraction of contacts attributed to the most active
users of the network. The left figure displays the percent of vertices relative
to the total number of vertices in a slice responsible for the contacts plotted
in the right-handed figure.

0 20 40 60 80 100
Slice

0

2

4

6

8

1e3
Activity of most active vertex
Size of largest cluster (Lprop)

Figure 4.24: Temporal Slices (∆t = 1d): Comparison between the
centrality degree of the single most active user in a slice and the size of
the largest cluster in a slice.
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Figure 4.22: Temporal Slices (∆t = 3d): Comparison between the total
number of contacts and the fraction of contacts attributed to the most active
users of the network. The left figure displays the percent of vertices relative
to the total number of vertices in a slice responsible for the contacts plotted
in the right-handed figure.
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Figure 4.25: Temporal Slices (∆t = 3d): Comparison between the
centrality degree of the single most active user in a slice and the size of
the largest cluster in a slice.

4.5.1 Average Nearest Neighbour Degree

As described in Section 2.6, average nearest neighbour degree (ANND) can
provide insight into the nature of how vertices connect in a network. We
calculated the “average” ANND-function for the sets of slices, K(k), by
averaging over the individual ANND-function for each slice, i.e., the K(k)
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is both an average over the neighbourhoods but also an average over time.
We divided our timeline into the three phases we found in Section 4.2.1 and
performed the same calculation on each of the phases to see if the ANND-
function changed significantly during the progression of the DW. The figures
showing the average ANND-function over the entire sets of slices are shown
in Figures 4.26 to 4.28. Note that both axes are logarithmically scaled.
Comparing the results for the different ∆ts, we see that they all display the
same overall relation but with varying levels of resolution, as expected. The
ANND-function indicates that the network leans towards a disassortative
nature but is not clear enough for us to identify a suitable approximation.
To be able to define the networks degree assortativity strictly, we would want
to be able to approximate the ANND-function as some relation K(k) ≈ akµ,
which would enable us to interpret the sign of µ to reveal the nature of the
degree correlation [50]. It is clear from the figures that the data does not
seem to follow such a trend or any power law at all, and so attempting to fit
it would, at best, provide a very uncertain fit.
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Figure 4.26: Temporal Slices (∆t = 4h): Average nearest neighbour
degree (ANND) function calculated as average of all slices in set. Fit using
ordinary least squares.

What we will do is analyze the trends shown in the figure, for which we
turn to the results from the ANND-function for the different phases shown
in Figures 4.29 to 4.31. From all figures displaying phase 0, before the peak
on Twitter, the data follows a much straighter line than when looking at the
entire time interval. This pattern indicates that in the early phase of the
DW, the degree connectivity of its underlying network follows a power law
with a negative exponent, i.e., it has a disassortative nature. As previously
mentioned in Section 2.6, the article Why social networks are different from
other types of networks by M. E. J. Newman and Juyong Park reports
social networks as typically assortative in terms of degree correlation [53].
That result is interesting in light of our results, in general, showing the
network being disassortative, and as by intuition, one might assume that
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Figure 4.27: Temporal Slices (∆t = 1d): Average nearest neighbour
degree (ANND) function calculated as average of all slices in set. Fit using
ordinary least squares.

social networks should display a disassortative nature just from there being
less very well connected people than sparsely connected people in the world.
Imagine the following pool of a well-connected individual, e.g., a politician
or a celebrity on an OSN. There is a reasonable probability of this individual
being connected to other well-connected people. Still, this number relative to
the number of individuals from the general population following them is likely
very small. Individuals of the general population are likely more sparsely
connected, so the average connectivity of the people connected to densely
connected people should be relatively small. Suppose we now imagine the
contact pool of a sparsely connected individual, where the total number of
contacts is small. In that case, it will only take one or a few densely connected
contacts to skew the average degree centrality of its neighbours. Combining
the expectation for densely and sparsely connected individuals argues for
a disassortative nature of the network’s degree correlation. We base this
hypothesis on intuitions made from our own experience of the nature of
humans interacting on OSNs, the distribution of “sheep vs. shepherds” in
the general population, and the assumption that this nature of the following
network translates to interaction networks. The only results we can use to
test the hypothesis are those obtained from our unique dataset. Therefore,
we suggest this as a possible area of interest for future work on the subject.
In our dataset, the trend is overall disassortative, with the phase before
the peak on Twitter seemingly following a power law. If what we expect
from the interaction network of Twitter, in general, is an assortative degree
correlation, such disassortative tendencies could be something worth looking
into as an early indication of a DW, but this would require more research
and more data to be confirmed as a distinct trait of a DW evolving on an
OSN, as it could be a mere coincident or not correlated to the evolution of
the DW at all.
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Figure 4.28: Temporal Slices (∆t = 3d): Average nearest neighbour
degree (ANND) function calculated as average of all slices in set. Fit using
ordinary least squares.

Looking at phase 1 (during the peak on Twitter), the ANND-function
does not seem to follow a power law. The relationship is seemingly
disassortative for vertices with k < 10, but this trend does not continue
for higher degrees. Instead, the correlation turns assortative before we
observe a rather abrupt change in ANND for vertices with degrees close
to 102.5 or approximately k ≈ 300 − 400. Here, the ANND-function drops
before flattening out for higher degrees. This result is not straightforward to
interpret, as to the best of our knowledge, there is no clear explanation as to
why the ANND-function should drop by nearly a magnitude of 102 between
vertices of degree ∼ 200 and vertices of degree ∼ 400. This behaviour can
be an indication of some “critical” area of degree values for the underlying
network that make up a DW during its peak, where the nature of the
network’s degree correlation changes and so be of interest for future research.

The period after the peak, phase 3, shows for all ∆t the most erratic
behavior of all the phases. This thesis aims to provide an initial foundation
for predicting dangerous conspiracies in complex networks. As a result, our
focus has been chiefly on the period leading up to a DW going viral on an
OSN and the period during its peak, but not the period after. Since the
information obtainable from phase 3 can not help us towards this goal, we
choose not to analyze further or interpret the result.
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Figure 4.29: Temporal Slices (∆t = 4h): Average nearest neighbour
degree (ANND) function calculated from three separate phases as described
in the text. Fit using ordinary least squares.
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Figure 4.30: Temporal Slices (∆t = 1d): Average nearest neighbour
degree (ANND) function calculated from three separate phases as described
in the text. Fit using ordinary least squares.
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Figure 4.31: Temporal Slices (∆t = 3d): Average nearest neighbour
degree (ANND) function calculated from three separate phases as described
in the text. Fit using ordinary least squares.
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4.6 Summarizing Discussion

Having introduced all the findings of this thesis, we present in the following
a summary aiming to gather the overall analysis of the results.

The main finding of this thesis lies in the exciting behaviour we
observed in the distribution of statuses and contacts over time, Figure 4.5.
The shape of the distribution displays a transition during the period where
the DW peaked on Twitter. This feature indicates a transitional nature of the
DW which supports the idea of modeling such spreading of misinformation
with harmful real-world consequences as a phase transition in the underlying
interaction network.

The distribution of vertex centrality degrees in Figure 4.1 approximately
follows a power law with a negative exponent, which argues for a close to
scale-free network. This indicates that the overall distribution of degree
centrality in a DW is not a unique quality as social networks often are weakly
scale-free [63, 64].

The distributions of cluster sizes in the different sets of slices, Figures
4.6 to 4.8, all follow a power law but wee see it most clearly from the results
produced with the Label Propagation algorithm. This result correlates well
with the degree distribution following an apparent power law. In Figures
4.9 to 4.11 we observe that all three of the cluster detection algorithms we
implemented favour small clusters of size < 10. This is likely an artifact
of there being many more vertices with a low degree centrality, and so
the algorithms perceive these as many small clusters. On the other hand,
as the results for vertex activity show that the largest cluster consists of
one vertex with high degree centrality connected to many vertices of low
degree centrality, we cannot confidently draw any conclusions. As all three
algorithms result in a magnitude of small clusters, it would be interesting to
investigate further their impact on the dynamics of the overall discourse.

Both the results depicting the number of vertices in the largest clusters,
Figures 4.12 to 4.15, and the paths of the largest cluster, Figures fig. 4.16 and
4.17, show that there is not one single cluster with a size of magnitude much
greater than all other. The peak in Figure 4.13 corresponds with the peak of
the conversation on Twitter and thus implies a possible centralization of the
conversation. This centralization can be an interesting feature in modeling
and predicting these phenomena, as it could provide an early indication of
smaller misinformation events turning into a DW. The results in Figures 4.16
and 4.17 show that the largest cluster generally does not stay the largest, nor
are we able to pinpoint a specific area where a new largest cluster that stays
the largest throughout appears. This points to a DW not emerging from a
single origin but rather a multiple of origins. We interpret multiple origins
in terms of a social network as multiple conversations with similarities in
the main message but with different overall narratives. These figures also
display oscillations, which we interpret as two or more large clusters going
back and forth in being the largest. This strongly indicates the existence of
multiple important narratives in the DW, which argues for a focus on more
than only the single largest cluster in future investigations.

The community detection algorithms and centrality measures imple-
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mented are well-tested methods, and the comparable results achieved for
the clusters produced by Leiden, Louvain, and Label Propagation, confirm
successful implementation. The Label Propagation algorithm ensures no
single-vertex clusters for a network containing only vertices of degrees > 1,
while Leiden and Louvain do not. This lets us determine Label propagation
as more suited for the task based on attaining a more realistic distribution
of clusters. The underlying cause of this attribute is that the Label Propa-
gation algorithm only stops iterating when there are no more vertices that
change labels. Leiden and Louvain stop after the system’s modularity does
not increase more than some tolerance when moving vertices. Even when this
tolerance is set to a very small number, the algorithms can, like in the case
of our network, prematurely stop, resulting in many 1-vertex clusters. Using
Label Propagation is thus a method of optimizing the cluster distribution
without adding external supervision.

We do not find evidence to support H3 in the results. Observing the
number of vertices in the largest cluster in the temporal slices, Figure 4.13, at
no point, do we see a significant growth in cluster size across slices to indicate
a critical size. In certain slices, the size of the largest cluster increases greatly
from the former slice, but it does neither stay significantly large nor strictly
increase in size in the next slices. However, even though it is not evident
that the biggest cluster, i.e., main discussion or narrative, “eats up” smaller
discourses when reaching a critical size, we can show a centralization for
the biggest 10% of clusters (see Figure 4.13). This could be another quality
worth investigating as a potential driver of the observed transition.

The activity of the most active vertices vs. the total number of contacts
in each slice, Figures 4.20 to 4.22, show that, at times, under 4% of the users
account for over half of the total contacts. This comparison must not be
interpreted as one person tweeting a lot, but rather that only 4% of vertices
are, most likely, inbound to over 50% of the edges. This result underlines the
importance of the contributions made by influential users in the DW, and
along with the activity of the most active vertex nearly perfectly overlapping
the size of the largest cluster in Figures 4.23 to 4.25. Furthermore, it
provides support for hypotheses H1 and H1a, while undermining hypothesis
H2. In other words, influential users are central in drawing other users to the
conversation. Moreover, it is not necessarily conversations back and forth
between users that drive the conversation but rather the activity of a small
set of influential users that provokes responses from big groups of others.
Based on these results, we suggest that future work should be conducted
focusing on the activity of central vertices.

The disassortative nature of the ANND-function, shown in Figures 4.26
to 4.31 contradicts expectations from literature [53]. Disassortative nature
means a strong tendency for well-connected users to connect to sparsely
connected users and visa versa, which we, in the context of Twitter statuses,
see as an artifact of many users responding to the post of an influential
user. We do not believe it to be influential users having back and forth
conversations with many other users. Suppose this behaviour of the ANND-
function is unique and characteristic to a social network during a DW when
compared to the ANND-function of the network on average. In that case, it
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can be an interesting feature for modeling and predicting DWs.
We found that the naive way of slicing using a constant maximum

neighbourhood size did not provide more information about the network
dynamics than can be gained from accumulative slices. Furthermore, we
assume that given more time to develop the contact-based slicing method,
it could provide new information about the structure and evolution of the
network. These developments include implementing a more complex criteria
function based on individual vertices (see Section 3.3) and adding an aspect
of time.

We intended to look at more centrality measures for vertices, more
specifically betweenness and closeness centrality, that we presented in Section
2.5. Calculating these measures for our network proved too time-consuming,
and we did not have the opportunity to obtain results for them during this
project.
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Chapter 5

Conclusion

In this thesis, we first introduced the reader to the concepts and methods
needed to follow the experiments and understand the analysis of the results.
This included defining terms related to Digital Wildfire (DW) and online
social network (OSN), defining networks and methods related to complex
network theory, and a walk-through of the applied community detection
algorithms.

After covering the necessary background, we presented our contributions
in terms of methods and the overall experimental setup. We specifically
focused on the graph representation of Twitter’s underlying interaction
network. Furthermore, we went into detail concerning the methods we
developed for graph slicing. In our experiments, we analyzed the derived
network slices using Leiden, Louvain, and Label Propagation algorithms.
This approach allows for identifying possible key qualities in the structure
of the conversations. In addition, we looked at measures such as degree
centrality and assortativity to describe vertex activity, which allowed for
uncovering more possibly characteristic patterns and behaviours of a DW.

In the following, we present our main findings and proposals for future
work, as well as our final thoughts and comments regarding the ongoing
threat posed by DWs and the importance of developing methods that enable
us to predict and stop them.
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Conclusion

This thesis is the first aiming to model the dynamics of the
spread of misinformation with harmful real-world consequences,
known as Digital Wildfires, in complex temporal interaction
networks. Hence, this work is also the first attempt to understand
and extract more universal patterns from the communication underlying
a DW, beyond analyzing individual information cascades. The ultimate
goal is to develop methods for predicting the spread of misinformation with
harmful consequences, something we are convinced is only possible through
understanding these phenomena on a societal scale.

Because of the exploratory character of the thesis, the results uncovered
during the course of this work are diverse and of a general nature. However,
the main the main finding of the thesis is:

The dynamics of the communication underlying Digital Wildfires
show similarities to phase transitions.

We suggest that modeling DWs as phase transitions in their underlying
interaction networks is a promising strategy. However, we first aim to
understand the characteristics of DWs and the transitions that transpire
in them. Thus, in Chapter 3 we introduce four hypotheses based on our
understanding of the nature of DWs. These hypotheses are carefully chosen
to identify patterns in the underlying communications.

We found evidence supporting the Centralized Core hypothesis (H1)
and The Influencer Transition (H1a), which we argue is sufficient to
propose a possible driver, namely, influential users. The degree of the vertex
with the largest degree centrality nearly perfectly overlaps with the size of
the largest cluster.

Along with results showing that a minor group of vertices, at times, are
inbound to over half of the edges, the overlap of activity and cluster size
indicates that central vertices are major in drawing users to and driving
the conversation on a large scale. Moreover, these results undermine the
Dispersed Core hypothesis (H2). One can argue that an influencer is not
influential without a large number of individuals to influence. However, the
influencer is the catalyst in this equation, and the increasing number of active
users is only the reaction.

Our findings undermine The “Black Hole” Transition hypothesis
(H3), i.e., we do not observe a critical size at which a cluster starts
“consuming” vertices at a substantially higher rate. However, there are
oscillations between the largest communities, i.e., the main narratives, and an
apparent centralization of the discourse into the largest clusters. Moreover,
we observed that the largest cluster at the beginning of the DW does not tend
to stay the largest as the DW transpires, indicating that a DW has its origins
from multiple sources. Thus, contrary to expectations, the rapid growth in
the number of tweets with misinformation content cannot be explained by
a single rapidly growing narrative that individuals are constantly joining.
Instead, the rapid growth of the overall phenomena is likely caused by
different narratives connecting.
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The main limitation of the thesis is the uniqueness of the dataset. It
requires a substantial amount of data, either from other DW in online social
networks or from sources who can capture the essence of a DW and synthesize
realistic data, to enable us to identify unique features that are general only
to the spread of misinformation on OSN. These features are essential to
produce a comprehensive model; thus, it would be impossible at this point
to directly model a DW as a phase transition.

To conclude if we answered the main research question, we once more
break it down into smaller questions.

Focusing on the modeling of social networks and temporal data, we
produced an underlying graph consisting of all the contacts and statuses in
the data, from which we produced three types of sets of slices; accumulative,
contact-based, and temporal. The accumulative and contact-based sets
provided insight into the movement and evolution of the cluster in the
network. Given the time window of this thesis, we could not finalize the
concept and implementation of the contact-based slices, and using a constant
and high k-value in the criteria function resulted in sets of slices too close to
the accumulative one to provide any new insight. The temporal slices allowed
us to investigate the overall temporal evolution of the network’s vertices and
their activity, providing insight into the different stages of a DW spreading
in an OSN.

In terms of analysis, we again highlight the main finding and discussion
around the hypotheses in the preceding paragraphs. In addition, we divide
the DW into three distinct phases; one before the peak on Twitter, one during
the peak on Twitter, and one after the peak on Twitter. Although all three
displayed an overall disassortative nature, the average nearest neighbour
degree of these phases differed significantly, something we believe could be
an exciting area for further investigation and possibly a unique trait of a
DW.

A secondary finding is identifying Label Propagation, in our case, as the
superior algorithm for cluster detection. Label Propagation guarantees a
minimum cluster size of 2 in a network with no isolated vertices, resulting
in a more realistic distribution of clusters. Thus, allowing for optimization
without adding supervision.

To summarize, discovering transitions in the underlying follower network
of a Digital Wildfire is easy, but identifying the qualities and the critical
phenomena necessary to model it as a phase transition is difficult. However,
we argue that modeling and predicting misinformation spreading is a problem
worth investing.

Sadly, today, the reality of misinformation on the internet is grim. A
very current example is the ongoing war in Ukraine, showing that modern
warfare is fought on all fronts, including online. The Russian government is
preventing the truth about war crimes committed in Ukraine from spreading
to the east and to the Russian population while spewing out false claims of
righteousness. This is only one of the scary examples of how the censorship
of factual information and the spreading of misinformation can be used to
such a degree that nearly an entire population is kept in the dark.

Another example is how digital communication impacts the development
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of conflicts and the spread of hate speech in Ethiopia and Mali, countries
where people are killed daily over conflicts linked to inequalities and ethical-
and cultural backgrounds. The dark realities referenced above underline
the importance of developing methods helping us to prevent misinformation
spreading online from causing harmful consequences. However, it is
important to note that understanding the dynamics of information spread
can be a powerful tool, both for those wanting to use it for good and for those
with malicious intents. In the best case, it is used by journalists and content
moderators in democratic societies to spot the emergence of a new extremist
group or a novel disinformation campaign. However, it could also be used
by a totalitarian regime to identify and control democratic uproar in social
networks early on. Technology alone cannot solve social problems. Solving
the problem of DW and the resulting harmful consequences will necessarily
involve technical tools. Still, education, media competence and an informed,
critical public are just as essential. Most importantly, we need to maintain
a democratic society that keeps those in power of these tools accountable so
that they are used for the common good.

5.1 Future Work

As conveyed by the title of this thesis, the main objective of our work is
to take the first steps toward predicting the spread of misinformation with
harmful consequences. Our goal is to lay the foundation for future work
on the subject and provide suggestions for directions to take. Mainly, we
take the first steps towards modeling a Digital Wildfire (DW) as a phase
transition by looking for evidence of transitions and potential drivers.

The addition of more data containing real DWs or realistic, synthesized
data could, in the future, enable us to generalize our findings and discover
more traits characteristic to a DW. The final goal is a mathematical model
that can capture the general nature of a DW, which can be used to identify
discourse on online social network (OSN) with the potential for real-world
harm.

A model can be expanded by combining interaction-based networks with
natural language processing. Analyzing the content of conversations along
with the information about the dynamics of the interaction network promises
a more detailed picture including the kind of misinformation spreading. Are
there topics that are more prone to attract the attention of the masses than
others? Do “conspiracy theorists” write in a different style than the average
OSN user, and can we quantify these differences?

We propose the idea of a more complex function for slicing, which
considers the running average of the neighbourhood size of each vertex. Since
the scope of this thesis allows only the development of a primitive prototype,
we suggest refining. However, we assume that when properly executed,
the contact-based slicing of interaction networks provide useful information
about how individuals join, leave, or switch between sub-conversations
during a DW.

In addition, we propose applying a learning algorithm to optimize k-
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values and enable us to find a “k-function” that yields the optimal values
for creating slices that best describe the evolution of communities. At least,
we imagine it could help us decide if we should focus more or less on the
effect small neighbourhoods have on the large communities and the overall
discourse.

Lastly, concerning contact-based slices, we wish to introduce the idea of
a function that adds yet another level of complexity, namely time. The goal
is to define a function dependent on both time and number of neighbours,
λ(t, k), which decides whether or not to forget an edge based on both the
number of neighbours a vertex connected to that edge has and the time. This
means that we combine the vertex-varying k with a time told so that even if
the k-criteria is not fulfilled, an edge deemed “too old” will still be removed.
This approach assumes that conversations that happened, for example, a
month ago, will not still be influential to the current dynamics of the spread
of the network.

Taking a more Bayesian approach to modeling the spread of misinforma-
tion in OSN, we believe it could be interesting to combine follower networks
and interaction networks. Using the degree centrality of users in the fol-
lower network as a prior, we can continuously update the prior using the
degree centrality of users in an interaction network as a likelihood to form
a posterior, hopefully letting us predict the importance/centrality of users.
This could even be extended to a special case of a compartmental model,
similar to those used to model disease epidemics. Imagine the users of an
OSN are divided into categories in relation to a conspiracy spreading on the
platform. For example, users who have not yet heard of the conspiracy are
placed in one category, users exposed to the conspiracy are placed in another
category, users actively participating in spreading the conspiracy are placed
in yet another, etc. Assigning individual probabilities based on vertex- and
edge attributes and location in the network, we could try to identify fitting
differential equations to describe how users move in and out of the different
categories and the spread of the conspiracy in the network.

A quality of the DW we deem of interest for future research is the
tendency of centralization we observed when looking at the size of the
largest network relative to the total number of vertices. This apparent
centralization or synchronization of the communities could be an essential
quality in identifying a DW before it turns significant. We would like to see
answered in the future whether singular individuals or larger groups drive
this tendency.
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