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Zusammenfassung

Soziale Online-Netzwerke wie Facebook oder Twitter sind für die wachsende Bevölkerung
ein wichtiger Ort, um Wissen und Informationen zu sammeln. Ein Trend zur Schaffung
und Verbreitung schädlicher Fehlinformationen, oft als ”fake news” bezeichnet, hat sich in
den letzten Jahren entwickelt. Dieser wird von der WEF als Bedrohung für unsere mod-
erne, stark verbundene [Web+16] Gesellschaft angesehen. Um entsprechende Phänomene
zu untersuchen und zu verstehen, verwendet das UMOD-Projekt [Umo] beispielsweise
einen graphentheoretischen Ansatz. Dabei werden Konversations– und Konnektivitäts-
graphen aus Twitter extrahiert. Diese können dann genutzt werden, um einzigartige
Merkmale zu identifizieren, welche für das Verbreiten von Fehlinformationen spezifisch
sind. Allerdings stellt das effiziente Extrahieren großer Datenmengen von Twitter mit
mehreren Tokens eine große technische Herausforderung dar. Diese Arbeit beschreibt das
Design und die Implementierung eines Authentifizierungs-Proxys für die Twitter-API
zur internen Verwendung. Der Proxy ist so konzipiert, dass die Datenquoten mehrerer
Benutzer gleichzeitig verwaltet werden können und somit die Datenbeschränkungen von
Twitter transparenter werden. Er skaliert linear in den verwendeten Clients und Token
und verursacht dabei fast keine Leistungseinbußen. Es besteht damit auch nur geringer
Implementierungsaufwand für weitere Layer bzw. Anwendungen, die mit der Twitter-
API arbeiten müssen. Die Authentifizierung-Proxies, sofern sie mit genügend Token
ausgestattet sind, machen damit eine hohe Skalierung bei niedrigen Leistungseinbußen
möglich.
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Abstract

Online social networks such as Facebook and Twitter are for a growing population
an important place to gain knowledge and information from. A trend of creating and
spreading harmful misinformation often called “fake news” has evolved in recent years
and is by the WEF [Wef] considered to be a threat to our growing hyperconnected
[Web+16] society. In order to investigate and understand this phenomenon the UMOD-
project [Umo] uses a graph-theoretical approach. Here, the objective is to extract
online conversations and connectivity graphs from Twitter with the emphasis to identify
unique characteristics specific to this type of misinformation. However, scraping large
amounts of data from Twitter using multiple tokens and endpoints efficiently poses a
considerable technical challenge. This thesis describes the design and implementation of
an authentication proxy to the Twitter API for internal usage. The proxy is designed
in such a way that the data quotas of several users are managed simultaneously and
thus Twitter’s data restrictions become transparent. The result is a proxy that scales
linearly with clients and tokens in use and incurs almost no performance penalties or
implementation overhead to further layer or applications that need to work with the
Twitter API. The authentication proxies if provided with enough tokens can provide any
scale at high performance with low penalties.
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1 Introduction

Online social networks such as Twitter and Facebook have been rising in popularity. The
advent and extreme user saturation of these new online social platforms allow individuals
to participate in large hyperconnected [Web+16] networks. Like never before, a rising
fraction of the population has the ability to share information and opinions in real-time
as conversations are not bound by mediums that are limited by physical boundaries such
as word-of-mouth.

Digital wildfires were observed and defined as ”rapid spread of misinformation even
when correct information follows quickly” [HWR13]. The World Economic Forum [Wef]
warned of increasing misinformation disseminated in digital wildfires on social media
platforms as a global threat to society. This phenomenon can be compared to a mass
panic where information is quickly shared without verification. This misinformation can
be created by accident or intentionally with a malicious goal in mind such as economic
advantages or political agendas. For example the US election of 2016 and Brexit which
have put ”fake news” and ”post-truth” into the global focus of scientists and the public.

There are not yet any well-established methods to automatically detect and control
the spread of such misinformation[SPL19][Wan17]. Thus the analysis of misinformation’s
spread via online social networks has become crucially important, as such misinformation
can have dramatic economic and personal impacts on a global scale. The UMOD [Umo]
project tries to identify and analyze such misinformation. The project aims to develop
tools and techniques to counteract misinformation spread.

For many experiments and studies UMOD requires a vast amount of complex and
broad data from the Twitter network in a large scale which need to be available quickly
in order to counteract on them. This poses a challenge as currently open sourced and
pre-existing tools don’t offer management and coordination of Twitter access quotas in
a distributed way. For analysing the connections between people and information in
those networks it is required to get an actual representation of the conversations and
its history. Namely by extracting the spreading graphs of digital wildfires and then
using machine learning to analyse the structure of the distribution patterns. The UMOD
project builds upon the hypothesis that these distribution patterns are characteristic
and thus will make it possible to detect wildfires through them. Other approaches try
to find linguistic approaches such as sentiment analysis or falsification of messages with
knowledge databases[CRC15].

Many networks like Facebook want to keep their user information closed to the general
public to create a safer environment. Twitter, on the other hand, is used for scientific
analysis, as user data is considered public. Due to this public nature it is used by
politicians, celebrities, and companies. The public nature of Twitter makes possible to
analyse mass data from the platform. Furthermore, it is also technically easier to acquire
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1 Introduction

the data as Twitter provides a well defined API to interact with the platform.
This thesis focuses on mitigating Twitter’s API rate limit restrictions by implementing

a proxy that transparently injects authentication information into proxied requests. The
proposed approach allows continued use of existing tools and scraping infrastructure
without modification, despite existing tools inability to handle distributed access to
Twitter’s API without triggering rate limit protections.

Twitter regulates access to its API with tokens that have an assigned quota (Section
2.1.2). By leveraging the proxy, existing software will continue to work as expected while
the proxy provides a centralized API endpoint managing all available quotas in real-time.

The FACT [SPL19] framework was created to capture and analyse massive amounts of
Twitter data in multiple experiment-environments. Those experiments can vary from
bursts to long running jobs. The architecture is microservice oriented following best
practices. This allows for a flexible setup with continuous modification during runtime
and for addition or removal of multiple experiments during runtime.
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2 Background

2.1 Twitter API

On average six thousand tweets a second are created on Twitter[Li+16]. To access this
huge amount of data, Twitter offers a developer API that allows you to interact with the
underlying services across multiple endpoints. Thus, everything that can be done on the
website can be done by using the API. Yet Twitter does not allow to retrieve its entire
data at once over their APIs. Therefore, enterprise customers have access to a so called
Decahose[Twib] stream which includes 10% of all Twitter data in realtime. There is also
a not listed option called ”Firehose” which streams all Twitter data in realtime, this is
not available to the public or research teams. There are some approaches to reconstruct
these Firehose accesses by reverse engineering Twitters Snowflake IDs[Twid], but this is
not the scope of this work and also violates Twitter’s terms and conditions.

2.1.1 Twitter Quotas

Despite Twitters public and open user profiles and content, it does not allow for mass
exporting the data, except for buying it through its Enterprise API which has higher
limits then the public one. For normal purposes like 3rd-party Twitter apps, users have
the ability to request an API token that allows the app to act and view content on
their behalf. The REST-API is rate limited under a 15 minute time windows that resets
the contingents of the individual endpoints to a constant amount of. Every URL path
group has its own rate limit which we will call quota from now on. A URL path group
is a matching regex path such as /user/:id where :id is a matching variable. In case
that the quota is exceeded the API returns an HTTP ”429 Too Many Requests”. A
time frame is anchored to the time of the first request on a given path. Furthermore, a
User generated token has no global upper usage limit or rate limit meaning that we can
continuously use the quota on an isolated path for analysis and calculations.

2.1.2 Twitter Authentication

Twitter requires requests to the API to be authenticated by an authentication token
that is created by a user for an so-called Twitter app[Twia]. Here, Twitter uses OAuth
1.0a[Twic] to authenticate apps acting as a user on behalf of a user. OAuth is an
authentication delegation protocol that generates tokens which carry the ability to
authenticate as a target without knowing any sensitive user data such as the password.
Twitter requires this OAuth token as an HTTP header field in every request to the API.

11
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2 Background

HTTP/1 .1 200 OK
. . .

X−Rate−Limit−Limit : 75
X−Rate−Limit−Remaining : 21
X−Rate−Limit−Reset : 1561277231
X−Response−Time : 148
. . .

Figure 2.1: Example response Header

To increase the total amount of Twitter data that can be collected, the UMOD project
uses a crowd-based approach. For this purpose, there is a donation button on the project
website. If the button is clicked by a Twitter user, this user transfers his data contingent
to the UMOD app in the form of an OAuth token. Currently, more than 90 users support
the project. This means that the amount of data that can be collected is ninety times
higher.

2.1.3 Twitter API Characteristics

Every Twitter REST-API response returns information about the current path rate limit
status and other instrumentation related fields. These include the maximum possible
usage amount on the current path, currently remaining requests and the epoch timestamp
at which the used token quota gets reset.

2.1.4 Twitter Worst Case Analysis

Twitter is one of the main online social networks next to Facebook. Twitter started in
2005 with 5,000 tweets a day and increased by magnitudes to 35 million tweets per day in
2010 to finally almost 500,000,000 tweets per day in 2013[Li+16]. Twitter released these
numbers in 2014, it can be assumed that these numbers haven’t changed much due to
the fact that Twitter’s active user count has not increased after 2014. 500 million tweets
a day equals 6000 tweets a second rounded up to the thousands on average. However
during record tweet events like TV airings a twenty-fold increase was recorded with a
peak of over 140 thousand tweets per second.

These numbers will be used to evaluate the feasibility and performance of the architec-
tural choices and the implementation and design.

2.2 Golang

The proxy is written in Golang[Gol]. Go, short for the name Golang, is a statically typed,
compiled programming language. It was designed and first implemented at Google to
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2.3 Containers

replace their internal languages. Go has the CSP style concurrency natively built into
the language and offers garbage collection as well as memory safety[Gol].

2.3 Containers

A container is a wrapper around different isolation layers in the kernel to run applications
on multi user setups with replicable workflows. Containers bundles their whole environ-
ment such as (system) libraries, runtimes i.e JVM, scripts and executables. This makes
containers self contained and allows them to be run on any system with the promise of
working in exactly the same way. This also includes the production environment where
the containers will be deployed to. The development can be done on a local machine
with containers which saves development time and offers additional security over the
written code and its side effects in a different environment.

2.4 Kubernetes

Kubernetes[Bur+16] is the container orchestration tool used to deploy the test envi-
ronment, it is responsible for managing the life cycle of containers and to manage its
surroundings such as the network, volumes and hardware resources. All components, e.g.
the proxy or the broadcaster, which are developed in the scope of this work are deployed
in a Kubernetes cluster to abstract away the complexity of maintaining a distributed
system. Kubernetes offers first class functions to scale an application and make it publicly
available. Additionally, it is possible to specify the structure of the cluster in manifests
which are structured text files and push it to Kubernetes to reach this defined point
automatically in a declarative manner.

2.4.1 Service

A Kubernetes Service is responsible for routing traffic to the proxy servers. This creates
a load balancer which in a round robin manner distributes the connection to the set of
running and healthy proxies.
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3 Architecture

The general reason behind using a service to inject authentication information into a
connection to Twitter is that we don’t need an ongoing connection state or a centralized
point to do so. This enables us to create a thin layer that is extensible with caching logic
or metrics of how we interact with the Twitter API.

3.1 Architecture Overview

The architecture proposed here, is intended to extend the already existing framework
architecture, proposed in the FACT paper[SPL19]. We already have a service which
previously talked directly to the Twitter API. This scraper service also had to know of the
OAuth tokens and was therefore responsible for managing quotas so that no congestion
would occur. As Twitter authentication is done through OAuth we introduce an HTTP
reverse proxy service that now is responsible for load balancing the tokens on the request
to the real Twitter API.

3.1.1 Internal Reverse Proxy

A reverse proxy is an application that is executing queries, on behalf of a client, to
another server. In our case the proxy address serves as the internal virtually unlimited
twitter API given that we have enough user OAuth tokens and adequate load balancing.
The proxy can be seen as a reverse proxy for the clients that need to be balanced onto
the distinct OAuth endpoints. A single OAuth token can be seen as a different server in
the backend. This design also allows for caching to further improve lookup times and
reduce quota pressure.

As every proxy will be stateless, the proxy layer can be scaled horizontally to counter
memory, CPU or IO stress. It is possible to scale the number of proxies given a scheduling
system like Kubernetes (see Section 2.4) according to the demand.

This makes it possible to keep the current FACT-implementation as well as to scale
and share the authentication layer so that the scrapers don’t need to bundle connections
on a centralised location. This approach also enables better distribution of token quotas
between all scrapers and therefore it is no longer required to distribute the tokens to
scrapers.
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3 Architecture

Figure 3.1: Layout of the front facing infrastructure

3.2 Token/Quota Distribution Algorithm

In order to implement the proxy aimed at in this thesis, tokens (Section 3.2) and their
associated request quota are managed in such a way that as many requests as possible
are successfully executed. The token distribution algorithm is the integral component to
make the proxy scaleable and efficient over the use of multiple instances. Each proxy
has access to all available tokens which can be considered as the maximum capacity of
available requests. When increasing the number of processes that make use of quotas
(Section 2.1.1) the proxy needs to coordinate each token’s overall quotas. Moreover, the
coordination has to be in a way that the proxy doesn’t run into congestion problems
where another proxy already exceeded the token quota. Here, congestion problems result
in long round trip times, as the proxy has to retry the request with another token. There
are two different ways of coordinating quota budgets with almost orthogonal properties.
We can ether block every request and have a consensus algorithm in order to determine
which proxy is going to use a token or we can work on a best effort basis to avoid global
locks. These two methods can be categorized as blocking and non-blocking approaches
(see Section 3.2.1 and 3.2.2). In the following section we will evaluate which proposed
way is more suitable to implement.

3.2.1 Blocking

Blocking algorithms have in common that the globally remaining quota gets checked
before executing a request. This prevents the sending of requests with exceeded quotas
to the Twitter servers. The common problem with these algorithms is that a global
lock needs to be acquired for performing a single request. This is time-consuming and
computationally intense. Furthermore, all services are heavily dependent on the scheduler
a locking service. Thus, in case of a critical service breakdown the the entire system
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3.2 Token/Quota Distribution Algorithm

might be unable to operate and beyond that, it means that all services are dependent on
a scheduler, which is responsible for managing the locks.

It would be possible to bypass this bottleneck and later optimize performance by
sharding the quota groups but one pays for it with a not inconsiderable amount of
additional complexity, maintenance and operational overhead.

3.2.2 Non-blocking

Compared to blocking algorithms non-blocking algorithms try to work on an greedy-
best effort basis. This class of algorithms doesn’t require global locking, information
sharing and coordination to work. However algorithms in this class can still benefit from
additional information that can be shared between the different clients. The additional
information will improve the greedy algorithms to bring down the average case. Such
extra information can be rate limits, other proxy server statistics, or request rates.

Non-blocking algorithms avoid the global locks by greedily trying to use locally
remaining quotas with no perfect knowledge of the real remaining quotas which another
proxy could have used. Moreover, non-blocking algorithms ideally use the extra rate
limit information returned with every response from the Twitter REST-API to update
their internal quota allowance list. Once a quota is exceeded with the last request or on
a quota exceeded response the proxy marks the the quota as ”not use”. The quota will
get reset after its rate limit lifetime passed.

3.2.3 Worst Case Analysis

The advantage of the blocking algorithm is to have perfect token usage without a
single faulty request. It can be compared to creating a lease of a token budget and
handing it out leading to an immediate success for every request. When working
with a non-blocking greedy algorithm we don’t get perfect token usage and in the
worst cases request can fail, which will lead to another request until we (1) run out
of tokens (2) have a successful request. This makes the worst case on a single request
response time O(latency to twitter ∗#tokens available). This approach will also lead
to O(#proxy ∗#quota paths ∗#quotalimit ∗#tokens) faulty requests during each time-
frame to the Twitter API. Later in Section 4 we evaluate more performance optimizations
to drive down the faulty requests and the average request time.

3.2.4 Average Case

The average case of the blocking algorithm depends how long it takes to acquire a lock
from the database and of the current load on the database. As with the non-blocking
algorithms most requests are going to succeed without any further processing we can
also set the average case to a low constant factor, as without locking a token can just be
chosen.

17
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3.2.5 Faulty Requests

Twitter does not document what the probable actions and consequences on too many
requests on a rate limited endpoint are. Unauthorized quick accessing of an endpoint
with a high request rate could be interpreted as a DDOS attempt. Twitter has a fair
use policy in their terms of use and keeps the right to revoke tokens if they are not
used responsibly or in an inappropriate manner. As this can cause problems for all
experiments we try to minimize the faulty requests but don’t require to keep the faulty
request amount at zero. We will later set an appropriate faulty request rate target.

3.2.6 Security

Both approaches can be considered equivalent in their aspect of security. The most
important security aspect to us is the number of tokens on a particular proxy instance
which can be compromised. In case a proxy gets compromised the tokens that the proxy
holds are leaking. We need to share all the available plain text tokens and thus all
security relevant information as it gets injected into the HTTP request in plain text.

In the blocking approach the database which hands out leases to a quota also needs to
send the OAuth token to the proxy. Therefore, it is possible that in a short time a single
proxy is exposed to every token by going through all the global quota. Thus making all
tokens visible to all proxies immediately should not make a difference as both approaches
get exposed to all tokens over a short period. If there will be the need of a separation of
tokens that is security relevant it is possible to run different clusters that are separated.

3.2.7 Discussion

Blocking algorithms have the advantage of perfect token usage but they require a complex
setup and have high average call times. Moreover, in case of using a database it needs to
be capable of withstanding peak burst workloads.

Since a Non-Blocking algorithm can be improved by introducing broadcasting events
to other proxies that indicate when a quota was exceeded (Section 4.2) the latency as
well as the number of faulty requests can be further reduced. Under high load, we can
still run into the problem of checking every token multiple times and maybe come closer
to the worst case but the majority of request will still run in low time. Not requiring a
central component allows us to scale the proxies horizontally.

For the above mentioned reasons we have chosen the non-blocking greedy algorithm
and optimize it to perform well and reduce the occurrences of the worst case making it
possible to only consider the average case time complexity while reducing the occurrence
of the worst case (Section 2.1.4).

3.3 Reverse Proxy Internals

The reverse proxy needs to be able to do mainly two things: rewrite and redirect requests
with valid OAuth tokens and block requests with a retry time in case the corresponding

18



3.3 Reverse Proxy Internals

Figure 3.2: Layers of the internal proxy data flow: (1) The requested path gets parsed
and matched (2) against its path group. (3) A token with remaining quota
gets searched (4) and injected to the Twitter request. (5) The response gets
parsed and local quota (6) adjusted. If the quota is already exceeded (7)
another token gets chosen.

quotas are exceeded. The proxies job is to accept connections and to find an appropriate
token to use.

3.3.1 Routing Tree

To quickly detect if a request has quotas available the corresponding URL path needs to
be parsed and matched against its registered API URL-group which includes the rate
limit information. Therefore, we need an efficient routing tree structure. The routing
tree’s match() function will be invoked for every request to get the meta path for a
given requested path e.g. the real request path /user/123 will match against the meta
path /user/:id. We call those meta paths slugs, as they represent and contain the
quota for a group of requests.

In our routing tree data structure, every full path points to the token-id and a quota
tuple of (available requests, reset tokens, reset epoch). Since our application should be
able to parse the paths quickly and and all paths are static for an API version - only

19
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3 Architecture

. . .
” r e s o u r c e s ” : {

” us e r s ” : {
”/ us e r s / p r o f i l e b a n n e r ” : {

” l i m i t ” : 180 ,
” remaining ” : 180 ,
” r e s e t ” : 1403602426

} ,
”/ u s e r s /show / : id ” : {

” l i m i t ” : 180 ,
” remaining ” : 180 ,
” r e s e t ” : 1403602426

} ,
. . .

Figure 3.3: Example part of the /application/rate_limit_status endpoint

gradually changing over time when layout changes to the Twitter API happen. It seems
to be a good practise to store all paths in a radix-tree with log(250) ≈ 8 operations
lookup time.

3.3.2 Constructing the routing Radix-Tree

A proxy at start time has no information about the Twitter API structure. We assume
that the API structure is the same for every token. Twitter gives us the possibility to
discover the structure of its endpoints. Under the path https://api.twitter.com/1.1/

application/rate_limit_status.json we get all endpoints with their current quota
and regex matching paths. It is necessary to get all paths in their regex notation as we
can’t simply group resource specific paths under one endpoint group.

We can use the request to dynamically construct the routing tree with all the available
quotas. This would cause a startup dependency on Twitter. To avoid this dependency
we can store the API responses during the build phase and use these during start time.
The proxy later can execute requests to the Twitter API to keep its routing tree up to
date.

3.3.3 Quotas Structure

As we need to construct our routing tree we need all slugs (Section 3.3.1) upfront. Ideally
we can gather this information during the start-time. This can fail quickly due to two
reasons (1) request fails (2) the quotas are already exceeded. Since this will make the
startup time for the proxy slow we can create a service that offers this structure but
having the same problems.
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3.4 Implementation

We inject an up to date structure during the build process so that the proxy can
construct its routing tree immediately and the start-time is not increased.

Later it is possible to update the tree structure by executing requests to the rate limit
API which returns the whole Twitter API structure.

3.3.4 Find remaining quota

After matching the correct slug to the group we need to find a token with remanining
quota for the given time-frame. All tokens are stored in a list, we always choose a random
starting point and from there on do linear check to all tokens if some quota still remains.
Having found a token we return it to the next layer to work with it.

We will later discuss (Section 4.2) different ways of selecting tokens with quota to
improve on the problem of collisions with multiple proxies.

3.3.5 Inject Headers & Twitter call

We overwrite the pre-existing OAuth headers and then call the Twitter endpoint. For
performance reasons we maintain a set of open connections to the API. Without these
open connections a TLS and TCP handshake would have to be established for every API
call and therefore would be slower.

3.3.6 Capture Twitter information & Update local quotas

As described in Section 2.1.3 the Twitter API returns valuable information in its HTTP
response headers. The local representation of the token quotas are getting adjusted to
the state the Twitter API responded.

3.4 Implementation

3.4.1 Programming Language

For the implementation of the proxy server we require a language that supports good
abstraction over concurrency and offers strong types for the security of the internet facing
system. For this purpose we have chosen Go (Section 2.2).

3.4.2 Previous Codebase

The previous codebase already had a scraper and an internal rate limiter in a single java
application that already utilised concurrent patterns to reduce the time while waiting for
a network request/response. The scraper code also got basic login for rate limit quota
avoidance and handling of multiple tokens. The new code is located under the /proxy
folder and contains all code related to the project. The old and still used Java scraper
code got stripped of it’s unused code and adjust the Twitter base URLS to the proxy
URL.
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3 Architecture

3.4.3 Load Balancing

The proxy is horizontally scaleable by adding multiple instances to a pool of proxies. We
need to load balance the connections to the proxies by adding load balancers in front of
those. The proxy does not require any state such as session affinity thus it is possible to
use stateless round robin without concerns.

3.4.4 Problems

During testing the scraper extensively works with the rate limit endpoint and with rate
limit information from the response header. The scraper uses this rate limit information
to throttle the request amount to avoid blocked requests to the API server. When simply
forwarding the request the local per token quota gets send. This makes the scraper
assume that the quota is globally exceeded because it doesn’t know of the individual
quotas of all other tokens.

To avoid that scrapers stop before the global quota is exceeded the proxy has to track
the global remaining quota during all requests. When proxying a request from the API
the headers get exchanged to the global quota remaining limits and reset time.

As scrapers make extensive use of the /application/rate limit.json endpoint it is
required to replicate the behaviour of the endpoint. The endpoint returns the global
quota of all tokens together so that the scraper knows of the global limits.
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4 Experiments

To simulate how the proxy behaves in a real world scenario we are conducting experiments
which have the goal to validate or fix the performance of the proxy. We are using up to
1600 simulated tokens in the proxies to simulate a real world scenario which would be
able to scrape the real Twitter API in real time (Section 2.1.4). The UMOD project does
not have access to the required 1600 tokens this is why we introduce a caching service
which is shimming (Section 4.0.2) and reimplementing behaviour of the real Twitter API.
This way we can have fake 1600 tokens, which act like real tokens to the shim. The shim
is passing the first request to Twitter and is then using the cached result to respond to
the proxy. The clients for benchmarking are requesting different Twitter user profiles,
timelines and messages as in a real world scenario.

4.0.1 Load Generation

To generate load a tool called Apache Bench short AB[Abw] is used. AB generates
parallel requests to an endpoint and plots the responses for latency and response codes.
AB is used to test the API.

4.0.2 Shim

To reliably test against the Twitter API with controllable defined side effects and
behaviour another proxy was built. This proxy is called shim because it shims the
Twitter API to the quota load balancing proxy. The shim caches requests for an endpoint
group and never invalidates the cache. The shim reimplements some Twitter API
functionality, such as quota saving and decreasing. Arbitrary quota limit manipulation,
latency injection and faulty responses and request timeouts to reproduce real world
scenarios. With Apache Bench (Section 4.0.1) the shim can serve roughly 11k requests
in a second with a payload of 70KB generating a throughput of 700-800MB/s.

4.0.3 Instrumentation & Metrics

To understand how the proxy performs, we need to collect program level metrics such
as response code counts and request rates. For collecting and aggregating metrics from
multiple applications we use the Prometheus framework. ”Prometheus is an open-source
systems monitoring and alerting toolkit originally built at SoundCloud.”[Pro] We choose
Prometheus as it is easy to setup with Kubernetes and our Go code base.
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4 Experiments

Figure 4.1: Layout of the test setup. (1) Apache Bench creates load to the proxy, (2) the
Proxy is connecting to the shim with fake tokens. (3) The shim is caching
responses for API groups, on a cache miss the real (4) Twitter API is called.
(5) Prometheus scrapes the proxy for metrics

4.1 Throughput optimization

4.1.1 Setup

To understand the performance of more complex setup it important to understand the
performance of a single instance. To get the most throughput the shim and the proxy
that is being tested are run on the same machine. This allows for more IO which is done
over localhost as the packets don’t have to pass the whole TCP stack and are directly
copied to the other programs memory.

To measure the bottlenecks of the proxy a profiling tool is injected into the program
during compile time. The profiling library collects probes and metrics which later can
be analysed by a tool such as pprof. Pprof is a visualization tool which can display
Linux perf[Wea] files for mutex, CPU and memory profiles. Using pprof it is possible to
visualize and find bottlenecks.

We do not introduce latency or not enough token quota so it’s possible to get the max-
imum throughput. The performance will decrease when the applications get distributed
on multiple machines with a network in between them.

4.1.2 Optimization one

When using the described setup utilizing mutex profiles it was notable that a decent
amount of time was spend in the scheduler to set global quotas and printing log statements.
Moving the mutex up to avoid waiting for log IO allowed for an increase in performance.

4.1.3 Optimization two

Using the CPU and mutex profiler another hot-spot after section 4.1.2 was visible when
printing log statements which were sent when a limit was adjusted or a request forwarded.
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4.2 Pre-Advertising Requests (Broker)

Eliminating unnecessary log statements allowed for another increase in performance.

100 connections with 1600 tokens
Experiment
Name

Requests/s

Base 5404
Mutexs 7187
Minimum Log 11466

4.2 Pre-Advertising Requests (Broker)

4.2.1 Setup

This is an optimization to reduce the time and faulty-request average case. The current
implementation does not allow for multiple proxies to share the state of the local token
quotas, this leads to faulty requests to the Twitter API and long round trip times
as a request needs to go through every token until the proxy locally knows that the
global quota is already exceeded. To avoid running in already globally empty tokens
a broadcaster is used to distribute information in a Pub/Sub[] manner. The proxies
advertise when the quota of a token is locally exceeded so that all other proxies will not
run into the worst case scenario.

Using a message broker does not increase the delay as information can be send
asynchronously.

Each proxy subscribes to the broadcaster and applies events to it’s quota resource pool.
The messages from the broadcaster can only reduce the remaining limits, as information
can be outdated when reaching another proxy. This way a minimum number of remaining
token quotas is always being held by all proxies.

The test uses a single shim which is representing the Twitter API. As the shim runs
in the local cluster the response time is artificially increased to around 100ms, normal
distributed with a desired standard deviation of 25ms and a desired mean of 100ms
delay ∼ N (100, 252) + internal delay.

The proxies use 100 tokens and have 600 asynchronous client connections to the pool
of proxies which generate load.

The goal is to minimize the total amount of faulty requests
Broadcasting an exceeded token can be helpful. Still the problem of many requests at

the same time does exist, though this is unlikely to happen on all tokens as the tokens
get randomly selected.

All the information that gets advertised through the broadcaster is a representation of
the global state, all proxies hold a local variation of this state.

When a new proxy joins the network it’s representation of the token quotas has a high
difference in token quota budget to the globally advertised budget. While the proxy
subscribes to the global event stream it takes a whole Twitter rate limit time frame
to get all information for one frame. During the 15 minute time frame until capturing
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4 Experiments

Figure 4.2: Integration of a message broker for lower bound correction

all events the proxy can run into worst case scenarios by accessing tokens that have no
quota left. As every information gets reset over the course of 15 minutes, there is no
need for replays of pub-sub messages except for optimization.

4.2.2 Implementation

The broker can be any kind of Pub/Sub system as long as it can distribute messages to
all connected proxies in a performant manner. For message distribution Redis, a KV
store with PUB/SUB primitives was chosen.

During testing Redis could offer 80k msg/s. In larger scenarios this can be a bottleneck.
Using a software such as NATS which offers 3x the throughput might be suitable in later
scenarios.

4.2.3 Evaluation
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4.2 Pre-Advertising Requests (Broker)

When running with one proxy the local state is always perfectly matching the global
state. When adding more proxies each proxies local state differs from the global state.
It’s visible that when adding a proxy each proxy besides the first proxy that reaches
a limit runs into the rate limit. This is why the sum of faulty requests is based on
the number of proxies. When generating asynchronous load multiple requests can be
forwarded by a proxy before adjusting to the global state of the token. This is why the
numbers of faulty requests is higher then (#proxies ∗#tokens).

When advertising the quota other proxies can adjust their local state.
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5 Summary

5.1 Result

We can conclude that it is possible to build a transparent authentication layer which load
balances request in a way that no central component will be needed. Furthermore, the
proxy used to authenticate requests can be constructed in such a way that no consensus
algorithm will be needed, thus avoiding a global lock. This novel approach can be used
to support at least 1600 tokens over multiple proxies which is enough to recreate a full
Twitter live stream. The code change to use the proxy is very limited as only a single
address needs to be changed, by code or by DNS.

5.2 Outlook

It is possible to further improve the code, as for example a global state approximation is
missing that’s required for new proxies joining a network of preexisting proxies. In the
current code a new proxy automatically assumes all tokens full before hitting the API
endpoints. A global state approximation can help new proxies recover to a state that is
generally accepted by everyone. It can also help to deal with missing messages from the
broker. It is currently not implemented as experiments are long running and a proxy will
recover to an optimum in the 15min time frame of the Twitter API.
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